Sunshine_in_Moon的专栏

天行健君子以自强不息!

LMDB To Picture by Python

自己写的一个小代码,稍后会传到GitHub上,这里分享给大家! # coding: utf-8 import lmdb import numpy as np import caffe_pb2 import cv2 dataDir = '***_lmdb'#lmdb文件夹 env = l...

2018-01-13 18:38:09

阅读数 275

评论数 0

Caffe中学习率策略应如何选择

今天,在训练网络时想换一种学习策略试试,因此重新研究了一下Caffe中提供的各种学习率策略,在这里和大家聊聊我使用时的一些经验教训。 我们先来看看和学习率策略有关的参数,以下的内容来自caffe.proto中: // The learning rate decay policy. The curr...

2016-12-11 00:28:05

阅读数 15036

评论数 3

Caffe-Windows下画loss与accuracy曲线

本篇博客主要讲述怎样在Windows下利用Caffe提供的脚本程序和Caffe训练日志画loss曲线与accuracy曲线。如果你是在Linux下使用Caffe可以参考这篇博客:http://blog.csdn.net/fx409494616/article/details/53197209?re...

2016-12-09 18:03:39

阅读数 6587

评论数 24

Caffe-Miscoroft无训练日志解决方法

Caffe的训练日志就是我们在命令窗口中看到的训练时打印出来的信息,我们可以利用这些信息画训练时loss accruacy图,至于怎么利用这些信息画出这两个图是下一篇将要讲述的问题。我们先来看看这些保存在什么地方。如果你是使用的Caffe-Windows版本是happynear大神编译的老版本,那...

2016-12-09 01:32:02

阅读数 3612

评论数 4

Check failed:error == cudaSuccess(30 vs. 0) unkown error

今天被这个问题折腾惨了。昨天Caffe使用还一切正常,今天就突然出现了这个问题,如下图所示: 我尝试重新安装CUDA,重新编译安装Caffe,都没有成功解决。后来灵机闪现,想到是不是显卡驱动的问题(其实我就应该想到的,哎!) 右击我的电脑->管理->设备管理->显示适配器 ...

2016-12-06 20:07:24

阅读数 11401

评论数 6

Caffe训练网络时的点点滴滴

以前主要是微调网络,所以参数的设计非常简单,我们只需要注意转换数据时把参数--shuffle=true,loss收敛就不会有什么问题。但是最近我重新训练网络,发现参数调试真的是一个麻烦的事情。在这里总结一下,供大家参考。     通过我不断的试验和大神的提点,我调节的主要是学习率。我们可能已经听说...

2016-11-25 13:40:59

阅读数 7487

评论数 4

Caffe中crop_layer层的理解和使用

前段时间一直忙着找工作博客已经很久没有写了,看到了很多人的留言没有回复,在这里和大家说声抱歉。Caffe也是很久没有使用了,前天突然发现Caffe更新了,出现了一些新层,于是就挑着在论文中使用到的新层研究了一下。      本片博客主要是说明crop_layer(我叫他剪裁层)的理解和使用。在此...

2016-10-23 11:03:13

阅读数 9206

评论数 7

使用Caffe时,数据预处理小工具集合

在使用Caffe时,我们经常需要对数据进行一些预处理,我把自己写的一些小脚本放到了github上,如果有需要大家下载使用,如果你有更好的小脚本希望与我分享! 连接在此:https://github.com/sunshineInmoon/Tools 如果你觉得还可以请给打个星星哟...... ...

2016-05-26 16:57:56

阅读数 4911

评论数 2

Caffe扩展新层

真的是被Caffe玩哭啦!。先说一下我的情况吧。我是用的Caffe是Windows版本,也许Linux版本就没有我的烦恼了。我想在训练的时候使用 BatchNormail层,由于我原先使用的是大神happynear的老版本了,但是老版本里没有Scale层,所以只能更新新版本。于是我使用官方Ca...

2016-05-19 15:56:19

阅读数 5028

评论数 1

Caffe中卷基层和全连接层训练参数个数如何确定

慢慢填坑中,今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题。我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mnist" type: "Data" top:...

2016-05-17 15:26:24

阅读数 9108

评论数 5

官方Caffe—Microsoft编译安装

安装了几次Caffe-Microsoft,是该总结一下了。总的来说,安装还是十分简单的,因为我们最头疼的第三方库可以自动安装。          第一步,下载解压Caffe          https://github.com/BVLC/caffe/tree/windows        ...

2016-05-16 16:45:07

阅读数 5515

评论数 1

Caffe错误:error C2220: 警告被视为错误 - 没有生成“object”文件

这个问题是我在安装官方Caffe,Windows版出现的问题,具体错误提示如下:     E:\NugetPackages\boost.1.59.0.0\lib\native\include\boost/format/alt_sstream_impl.hpp : error C2220: 警告被...

2016-05-16 16:44:37

阅读数 24582

评论数 2

Caffe错误:Message type "caffe.SolverParameter" has no field named "name"

今天使用caffe又遇到个奇怪的问题,错误提示如下: 注意错误提示,没有找到“name”,错误原因是我把参数写错了,注意最上面--caffe.exe train --solver=(这个地方应该是solver文件,而我写的是网络配置文件),改过来OK!

2016-05-16 11:03:08

阅读数 7709

评论数 1

Caffe错误boost::python::register_ptr_to_python<boost::shared_ptr<Blob<Dtype> > >();

今天在用Caffe- Microsoft可视化时遇到一个错误提示: No to_python (by-value) converter found for C++ type: boost::shared_ptrLayer > 后来,查了不少资料终于解决了。这个问题的原因应该是boost版...

2016-05-12 10:15:56

阅读数 1921

评论数 0

caffe微调网络时的注意事项(持续更新中)

最近在微调遇到了一些困难,在此做一个记录,与大家分享!      第一个,微调数据的准备      微调的目的是使别人训练好的模型更适合自己的数据,因此,微调的数据一般都是适合自己应用的数据。但是,大牛建议,在微调是不要全部使用自己的数据,应该将自己的数据和原始训练数据混合在一起,并逐步增加自己的...

2016-05-04 11:04:20

阅读数 9352

评论数 4

警告:MemoryData does not transform array data on Reset()

最近在使用caffe的MemoryData层是出现了MemoryData does not transform array data on Reset() 警告信息,但是并不影响最后的结果。经过查询源码得知 if (this->layer_param_.has_transform_para...

2016-04-12 18:49:09

阅读数 2361

评论数 0

Can't import name symbol_database

昨天辛辛苦苦又重新安装了一次caffe-windows(来自大神happynear,Caffe官网也退出了Windows版,我没有尝试)一切还算顺利,但最后用python接口时,出现了以前没有的问题。 首先提示没有google.protobuf模块,这个好解决,只要使用sys.path.appe...

2016-03-31 10:33:29

阅读数 5978

评论数 2

python调用caffe接口进行classify时提示Mean shape incompatible with input shape错误的解决方法

本文转自:http://blog.csdn.net/eagelangel/article/details/51009682?ref=myread python调用caffe接口进行classify时提示Mean shape incompatible with input shape错误的解决...

2016-03-31 10:18:31

阅读数 1065

评论数 0

Caffe中把数据转换成灰度图

已经很久没有写过博客,原因是有段时间没整Caffe了。今天心血来潮,微调一个网络,结果困难重重。哎,三天打鱼,两天晒网果然不行。废话少说,直接上干货。     首先是我的目的是微调网络,原始训练数据是单通道灰度图,因此微调时输入的数据也必须是单通道灰度图,否则出现以下错误:         我遇...

2016-03-25 16:57:20

阅读数 6928

评论数 4

CNN卷积神经网络的改进(15年最新paper)

 本文转自:http://blog.csdn.net/u010402786/article/details/50499864 回归正题,今天要跟大家分享的是一些 Convolutional Neural Networks(CNN)的工作。大家都知道,CNN 最早提出时,是以一定的人眼生理结...

2016-01-21 16:51:03

阅读数 1740

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭