1、赫夫曼树又称最优树,是一类带权路径长度最短的树。
2、从树的一个结点到另一个结点之间的分支构成这两个结点之间的路径,路径上的分支数目称为路径长度。树的路径长度是从树根到每个结点的路径长度之和。
3、结点的带权路径长度为从该节点到树根之间的路径长度与结点上权的乘积。树的带权路径长度为数中所有叶子结点的带权路径长度之和。
4、假设有n个权值{w1,w2,…wn},试构造一棵有n个叶子结点的二叉树,每个叶子结点带权为wi,其中带权路径长度WPL最小的二叉树称作最优二叉树或赫夫曼树。
5、规定赫夫曼树的左支代表0,右支代表1,则从根结点到叶子结点所经过的路径分支组成的0和1的序列便为该结点对应字符的编码,这就是赫夫曼编码。