bzoj2005(洛谷P1447): [Noi2010]能量采集

题意

(1,1)到(n,m)每个点,与(0,0)点连线上的整点个数若为 k k ,其权值即为 2k+1,求权值和。


题解

画个样例我们能发现,整点个数也就是 gcd(i,j)1 g c d ( i , j ) − 1

那么结果就是 ans=i=1nj=1m2(gcd(i,j)1)+1=i=1nj=1m(2gcd(i,j)1)=2i=1nj=1mgcd(i,j)nm a n s = ∑ i = 1 n ∑ j = 1 m 2 ( g c d ( i , j ) − 1 ) + 1 = ∑ i = 1 n ∑ j = 1 m ( 2 g c d ( i , j ) − 1 ) = 2 ∑ i = 1 n ∑ j = 1 m g c d ( i , j ) − n m

问题就转化为求解 i=1nj=1mgcd(i,j) ∑ i = 1 n ∑ j = 1 m g c d ( i , j )

这个可用容斥 O(nlogn) O ( n l o g n )

但用 mobius m o b i u s 化简的话,也就是

i=1nj=1mgcd(i,j)=d=1ndi=1ndj=1mdε(gcd(i,j))=d=1ndt=1ndμ(t)ndtmdt=k=1nt|kμ(t)ktnkmk(k=dt)=k=1nφ(k)nkmk(φ(k)=t|kμ(t)kt) ∑ i = 1 n ∑ j = 1 m g c d ( i , j ) = ∑ d = 1 n d ∑ i = 1 n d ∑ j = 1 m d ε ( g c d ( i , j ) ) = ∑ d = 1 n d ∑ t = 1 n d μ ( t ) n d t m d t = ∑ k = 1 n ∑ t | k μ ( t ) k t n k m k ( 令 k = d t ) = ∑ k = 1 n φ ( k ) n k m k ( φ ( k ) = ∑ t | k μ ( t ) k t )


代码

mobius m o b i u s

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define ll long long
#define N 100010
int n,m,mu[N],prime[N],tot=0;
bool notprime[N];
void mobius(){
    mu[1]=1;
    memset(notprime,false,sizeof(notprime));
    for(int i=2;i<=100000;i++){
        if(!notprime[i]){
            prime[++tot]=i;
            mu[i]=-1;
        }for(int j=1;j<=tot,prime[j]*i<=100000;j++){
            notprime[prime[j]*i]=true;
            if(i%prime[j]==0){
                mu[prime[j]*i]=0;
                break;
            }mu[prime[j]*i]=-mu[i];
        }
    }for(int i=2;i<=100000;i++) mu[i]+=mu[i-1];
}
ll f(int x,int y){
    if(x>y) swap(x,y);
    ll ans=0;
    for(int i=1,last=1;i<=x;i=last+1){
        last=min(x/(x/i),y/(y/i));
        ans+=(ll)(mu[last]-mu[i-1])*(x/i)*(y/i);
    }return ans;
}
int main(){
    mobius();ll ans=0;
    scanf("%d%d",&n,&m);
    if(n>m) swap(n,m);
    for(int i=1;i<=n;i++) ans+=(ll)i*f(n/i,m/i);
    printf("%lld\n",2*ans-(ll)n*m);
    return 0;
}

euler e u l e r

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define ll long long
#define N 100010
int n,m,prime[N],tot=0;
bool notprime[N];
ll ans=0,phi[N];
void euler(){
    phi[1]=1;
    memset(notprime,false,sizeof(notprime));
    for(int i=2;i<=100000;i++){
        if(!notprime[i]) prime[++tot]=i,phi[i]=i-1;
        for(int j=1;j<=tot,prime[j]*i<=100000;j++){
            notprime[prime[j]*i]=true;
            if(i%prime[j]==0){
                phi[prime[j]*i]=phi[i]*prime[j];
                break;
            }phi[prime[j]*i]=phi[prime[j]]*phi[i];
        }
    }for(int i=2;i<=100000;i++) phi[i]+=phi[i-1];
}
int main(){
    euler();
    scanf("%d%d",&n,&m);
    if(n>m) swap(n,m);
    for(int i=1,last=1;i<=n;i=last+1){
        last=min(n/(n/i),m/(m/i));
        ans+=(phi[last]-phi[i-1])*(n/i)*(m/i);
    }printf("%lld\n",2*ans-(ll)m*n);
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值