bzoj4069(UOJ110)【APIO2015】Bali Sculptures (数位dp)

#Problem
n n n 个数分成 x x x 组,求每组和的最小按位或值( A &lt; = x = B A&lt;=x=B A<=x=B

#Solution

错误dp…以此警示…
f [ i ] [ j ] f[i][j] f[i][j] 表示前 i i i 个数,分成 j j j 段的最小按位或值
f [ i ] [ j ] = m i n ( f [ k ] [ j − 1 ] ∣ s u m ( k + 1 , i ) ) f[i][j]=min(f[k][j-1]|sum(k+1,i)) f[i][j]=min(f[k][j1]sum(k+1,i))
虽说按位或会越来越小,但是可能出现或的内个值特别大,而前面我们如果取一个小的数,倒不如去一个大的数是后面都是0

考虑数位 d p dp dp ,我们考虑这一位是否能是 0 0 0 ,也就是一个 b n d bnd bnd 的限制,结果就是 b n d bnd bnd 取个反就好啦
对于 n &lt; = 100 n&lt;=100 n<=100 的情况,我们定义 f [ i ] [ j ] f[i][j] f[i][j] 表示前 i i i 个数分成 j j j 段能否满足 b n d bnd bnd 的限制(即某些位确定为 0 0 0)。然后 b n d bnd bnd 成立的条件就是 f [ n ] [ A ] f[n][A] f[n][A]~ f [ n ] [ B ] f[n][B] f[n][B] 中有成立的即可
复杂度为 O ( n 3 l o g ) O(n^3log) O(n3log)

但对于最后一个子任务…显然上面内个复杂度是做不了的
然而有一个特例 A = 1 A=1 A=1
我们可以省去一维枚举分成的段数。用 d p [ i ] dp[i] dp[i] 表示前 i i i 个数满足 b n d bnd bnd 条件的最少分的段数。
如果 d p [ n ] &lt; = B dp[n]&lt;=B dp[n]<=B 也就是说在满足 b n d bnd bnd 这个条件下,分的段数可以成立。

这样我们就可以把这道题解决了

#Code

#include <cstdio>
#include <cstring>
#include <map>
#include <algorithm>
using namespace std;
#define N 110
#define ll long long
#define inf 1ll<<60
int n,A,B,cnt=0,a[2010];
ll f[N][N],dp[2010];
ll sum[2010],ans=inf;
inline char gc(){
	static char buf[1<<16],*S,*T;
	if(S==T){T=(S=buf)+fread(buf,1,1<<16,stdin);if(T==S) return EOF;}
	return *S++;
}
inline int read(){
	int x=0,f=1;char ch=gc();
	while(ch<'0' || ch>'9'){if(ch=='-') f=-1;ch=gc();}
	while('0'<=ch && ch<='9') x=x*10+ch-'0',ch=gc();
	return x*f;
}
inline bool dp1(ll bnd){
	memset(f,0,sizeof(f));
	f[0][0]=1;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=i;++j)
			for(int k=0;k<i;k++){
				if(f[k][j-1] && !((sum[i]-sum[k])&bnd)){
					f[i][j]=1;
				}
			}
	for(int i=A;i<=B;i++) if(f[n][i]) return 1;
	return 0;
}
inline void solve1(){
	ll bnd=0;
	for(int i=cnt-1;i>=0;i--){
		bnd|=1ll<<i;
		if(!dp1(bnd)) bnd^=1ll<<i;
	}
	printf("%lld\n",(1ll<<cnt)-1-bnd);
}
inline bool dp2(ll bnd){
	for(int i=1;i<=n;i++) dp[i]=inf;dp[0]=0;
	for(int i=1;i<=n;i++)
		for(int j=0;j<i;++j)
			if(dp[j]!=inf && !((sum[i]-sum[j])&bnd)){
				dp[i]=min(dp[i],dp[j]+1);
			}
	if(dp[n]<=B) return 1;
	return 0;
}
inline void solve2(){
	ll bnd=0;
	for(int i=cnt-1;i>=0;i--){
		bnd|=1ll<<i;
		if(!dp2(bnd)) bnd^=1ll<<i;
	}
	printf("%lld\n",(1ll<<cnt)-1-bnd);	
}
int main(){
	freopen("a.in","r",stdin);
	n=read();A=read();B=read(); 
	for(int i=1;i<=n;i++) a[i]=read(),sum[i]=sum[i-1]+a[i];
	ll x=sum[n];
	while(x) cnt++,x>>=1; 
	if(A==1) solve2();		
	else solve1();
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值