bzoj1010: [HNOI2008]玩具装箱toy (斜率优化)

Solution

f [ i ] = m i n ( f [ j ] + ( i − j − 1 + s u m [ i ] − s u m [ j ] − L ) 2 ) f[i]=min(f[j]+(i-j-1+sum[i]-sum[j]-L)^2) f[i]=min(f[j]+(ij1+sum[i]sum[j]L)2)
为了方便计算,我们定义 a [ i ] = i + s u m [ i ] a[i]=i+sum[i] a[i]=i+sum[i] b [ i ] = i + s u m [ i ] + 1 + L b[i]=i+sum[i]+1+L b[i]=i+sum[i]+1+L

上式可转变为 f [ i ] = m i n ( f [ j ] + ( a [ i ] − b [ j ] ) 2 ) f[i]=min(f[j]+(a[i]-b[j])^2) f[i]=min(f[j]+(a[i]b[j])2)

因为 i i i 是通过 j j j 转移而得到的,假设 j j j 为最优解 f [ i ] = f [ j ] + ( a [ i ] − b [ j ] ) 2 f[i]=f[j]+(a[i]-b[j])^2 f[i]=f[j]+(a[i]b[j])2

f [ i ] = f [ j ] + a [ i ] 2 + b [ j ] 2 − 2 a [ i ] ⋅ b [ j ] f[i]=f[j]+a[i]^2+b[j]^2-2a[i]\cdot b[j] f[i]=f[j]+a[i]2+b[j]22a[i]b[j]

上式除了 f [ i ] f[i] f[i] 均为已知,我们将与 i i i 相关的整理到一起,得到 f [ j ] + b [ j ] 2 = 2 a [ i ] ⋅ b [ j ] + f [ i ] − a [ i ] 2 f[j]+b[j]^2=2a[i]\cdot b[j]+f[i]-a[i]^2 f[j]+b[j]2=2a[i]b[j]+f[i]a[i]2

此时可以理解为 f [ j ] + b [ j ] 2 f[j]+b[j]^2 f[j]+b[j]2 为因变量 ( y ) (y) (y) b [ j ] b[j] b[j] 为自变量 ( x ) (x) (x),则 2 ⋅ a [ i ] 2\cdot a[i] 2a[i] 为斜率。而想要 f [ i ] f[i] f[i] 最大,也就是截距最大。

那么我们定义点为 ( b [ i ] , f [ i ] + b [ i ] 2 ) (b[i],f[i]+b[i]^2) (b[i],f[i]+b[i]2)。想要截距最大,也就与次斜率相交最近的点即为答案。

所以我们要维护一个凸包(画图好麻烦啊…感性理解一波)

做法就是根据斜率,维护凸包。
首先看第一段斜率是否小于新加进来的这条的斜率,如果是,则把第一条便删去;
然后看最后一段斜率是不是大于新加进来的和倒数第二个点的斜率,如果是,则删去最后一个点。
注意:删点前提是有至少两个点。

注:前提是斜率单增…不然就需要二分了

Code

#include <cstdio>
#define ll long long
#define db double
const int N=50010;
int n,L,q[N];
db sum[N],c[N],f[N];
inline db a(int i){return i+sum[i];}
inline db b(int i){return a(i)+1+L;}
inline db X(int i){return b(i);}
inline db Y(int i){return f[i]+b(i)*b(i);}
inline db slope(int i,int j){return (Y(i)-Y(j))/(X(i)-X(j));}
int main(){
	freopen("bzoj1010.in","r",stdin);
	// freopen("a.out","w",stdout);
	scanf("%d%d",&n,&L);
	for(int i=1;i<=n;i++) {
		scanf("%lf",&c[i]); 
		sum[i]=sum[i-1]+c[i];
	}
	int h=1,t=1;
	for(int i=1;i<=n;i++){
		while(h<t && slope(q[h],q[h+1])<2*a(i)) h++;
		f[i]=f[q[h]]+(a(i)-b(q[h]))*(a(i)-b(q[h]));
		// printf("%lld %lld\n",X[i],Y[i]);
		while(h<t && slope(q[t],q[t-1])>slope(q[t-1],i)) t--;
		q[++t]=i;
		// printf("%d %lld\n",i,f[i]);
	}
	printf("%.0lf\n",f[n]);
	return 0;
} 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值