【bzoj3524】【poi2014】【couriers】【可持久化线段树】

Description

给一个长度为n的序列a。1≤a[i]≤n。
m组询问,每次询问一个区间[l,r],是否存在一个数在[l,r]中出现的次数大于(r-l+1)/2。如果存在,输出这个数,否则输出0。

Input

第一行两个数n,m。
第二行n个数,a[i]。
接下来m行,每行两个数l,r,表示询问[l,r]这个区间。

Output

m行,每行对应一个答案。

Sample Input

7 5
1 1 3 2 3 4 3
1 3
1 4
3 7
1 7
6 6

Sample Output

1
0
3
0
4

HINT

【数据范围】

n,m≤500000

题解:这个东西肯定需要使用可持久化线段树。

这个东西简单来说就是建n棵大小相同线段树。保存每次修改的历史状态。

因为每次修改并不会涉及到所有的点,所以好多点是可以共用的。

如果产生了新的节点那就新建一个点即可.

感觉大致的形态就是有n个根节点。底下好几层点各种相互连边。

但是从每个根节点出发都可以找到一棵树。来对应那个时候的状态。

查询的时候二分一下就好了。。

代码:

#include<iostream>
#include<cstdio>
using namespace std;
int rt[600000],ls[10000010],rs[10000010],t[10000010],n,m,x,cnt,ll,rr;
void change(int l,int r,int x,int &y,int p){
    y=++cnt;t[y]=t[x]+1;
    if (l==r) return;
    ls[y]=ls[x];rs[y]=rs[x];
    int mid=(l+r)>>1;
    if (p<=mid) change(l,mid,ls[x],ls[y],p);
    else change(mid+1,r,rs[x],rs[y],p); 
}
int query(int ll,int rr){
    int l=1,r=n,temp=(rr-ll+1)>>1,mid,x,y;
    x=rt[ll-1];y=rt[rr];
    if (t[y]-t[x]<=temp) return 0;
    while (l!=r){
      mid=(l+r)>>1;
      if (t[ls[y]]-t[ls[x]]>temp){r=mid;x=ls[x];y=ls[y];}
      else if (t[rs[y]]-t[rs[x]]>temp){l=mid+1;x=rs[x];y=rs[y];}
      else return 0;
    }
    return l;
}
int main(){
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++){scanf("%d",&x);change(1,n,rt[i-1],rt[i],x);}
    for (int i=1;i<=m;i++){scanf("%d%d",&ll,&rr);printf("%d\n",query(ll,rr));}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值