Description
给一个长度为n的序列a。1≤a[i]≤n。
m组询问,每次询问一个区间[l,r],是否存在一个数在[l,r]中出现的次数大于(r-l+1)/2。如果存在,输出这个数,否则输出0。
Input
第一行两个数n,m。
第二行n个数,a[i]。
接下来m行,每行两个数l,r,表示询问[l,r]这个区间。
Output
m行,每行对应一个答案。
Sample Input
7 5
1 1 3 2 3 4 3
1 3
1 4
3 7
1 7
6 6
1 1 3 2 3 4 3
1 3
1 4
3 7
1 7
6 6
Sample Output
1
0
3
0
4
0
3
0
4
HINT
【数据范围】
n,m≤500000
题解:这个东西肯定需要使用可持久化线段树。
这个东西简单来说就是建n棵大小相同线段树。保存每次修改的历史状态。
因为每次修改并不会涉及到所有的点,所以好多点是可以共用的。
如果产生了新的节点那就新建一个点即可.
感觉大致的形态就是有n个根节点。底下好几层点各种相互连边。
但是从每个根节点出发都可以找到一棵树。来对应那个时候的状态。
查询的时候二分一下就好了。。
代码:
#include<iostream>
#include<cstdio>
using namespace std;
int rt[600000],ls[10000010],rs[10000010],t[10000010],n,m,x,cnt,ll,rr;
void change(int l,int r,int x,int &y,int p){
y=++cnt;t[y]=t[x]+1;
if (l==r) return;
ls[y]=ls[x];rs[y]=rs[x];
int mid=(l+r)>>1;
if (p<=mid) change(l,mid,ls[x],ls[y],p);
else change(mid+1,r,rs[x],rs[y],p);
}
int query(int ll,int rr){
int l=1,r=n,temp=(rr-ll+1)>>1,mid,x,y;
x=rt[ll-1];y=rt[rr];
if (t[y]-t[x]<=temp) return 0;
while (l!=r){
mid=(l+r)>>1;
if (t[ls[y]]-t[ls[x]]>temp){r=mid;x=ls[x];y=ls[y];}
else if (t[rs[y]]-t[rs[x]]>temp){l=mid+1;x=rs[x];y=rs[y];}
else return 0;
}
return l;
}
int main(){
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++){scanf("%d",&x);change(1,n,rt[i-1],rt[i],x);}
for (int i=1;i<=m;i++){scanf("%d%d",&ll,&rr);printf("%d\n",query(ll,rr));}
}