Description
给定一个长度为N的数组a和M,求一个区间[l,r],使得(\sum_{i=l}^{r}{a_i}) mod M的值最大,求出这个值,注意这里的mod是数学上的mod
Input
第一行两个整数N,M。
第二行N个整数a_i。
Output
输出一行,表示答案。
Sample Input
5 13
10 9 5 -5 7
10 9 5 -5 7
Sample Output
11
HINT
【数据范围】
N<=200000,M,a_i<=10^18
题解:首先求出前缀和数组。依次加入set。每次从set中拿出第一个比它大的数。如果没有的话就拿出最小的数。
然后更新答案即可。
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<set>
using namespace std;
int n;
long long m,ans,a[200010],p[200010],temp;
set<long long>s;
int main()
{
scanf("%d%lld",&n,&m);
for(int i=1;i<=n;i++){scanf("%lld",&a[i]);a[i]=(a[i]%m+m)%m;}
for(int i=1;i<=n;i++)p[i]=(p[i-1]+a[i])%m;
s.insert(0);
for(int i=1;i<=n;i++){
if(s.upper_bound(p[i])!=s.end()) temp=*s.upper_bound(p[i]);
else temp=*s.begin();
ans=max((p[i]-temp+m)%m,ans);s.insert(p[i]);
}
printf("%lld\n",ans);
}