Description
给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用。
Input
第一行包含一个正整数n(2<=n<=200000),表示点数。
接下来n行,每行包含两个整数x[i],y[i](0<=x[i],y[i]<=10^9),依次表示每个点的坐标。
Output
一个整数,即最小费用。
Sample Input
5
2 2
1 1
4 5
7 1
6 7
2 2
1 1
4 5
7 1
6 7
Sample Output
2
题解:
把每个点先按横坐标排序,相邻点连边。
再把每个点按纵坐标排序,相邻点连边。
然后跑最短路即可。
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#define N 200005
#define zff pair<long long,int>
using namespace std;
struct use{int x,y,kind;}p[N];
struct use2{int st,en;long long v;}e[N*4];
priority_queue<zff,vector<zff>,greater<zff> >q;
int point[N],next[N*4],cnt,n,x,y;
long long dis[N];
bool f[N];
bool cmp(use a,use b){return a.x<b.x;}
bool cmp2(use a,use b){return a.y<b.y;}
void add(int x,int y,int v){
next[++cnt]=point[x];point[x]=cnt;
e[cnt].st=x;e[cnt].en=y;e[cnt].v=(long long)v;
}
void spfa()
{
memset(f,0,sizeof(f));
memset(dis,127,sizeof(dis));
dis[1]=0;q.push(make_pair(0,1));
while (!q.empty())
{
int x=q.top().second;q.pop();
if (f[x]) continue;f[x]=1;
for (int i=point[x];i;i=next[i])
if (dis[e[i].en]>dis[x]+e[i].v)
{
dis[e[i].en]=dis[x]+e[i].v;
q.push(make_pair(dis[e[i].en],e[i].en));
}
}
}
int main(){
scanf("%d",&n);
for (int i=1;i<=n;i++){scanf("%d%d",&x,&y);p[i].x=x;p[i].y=y;p[i].kind=i;}
sort(p+1,p+n+1,cmp);
for (int i=1;i<n;i++){
add(p[i].kind,p[i+1].kind,p[i+1].x-p[i].x);
add(p[i+1].kind,p[i].kind,p[i+1].x-p[i].x);
}
sort(p+1,p+n+1,cmp2);
for (int i=1;i<n;i++){
add(p[i].kind,p[i+1].kind,p[i+1].y-p[i].y);
add(p[i+1].kind,p[i].kind,p[i+1].y-p[i].y);
}
spfa();
cout<<dis[n]<<endl;
}