Description
Farmer John 有太多的工作要做啊!!!!!!!!为了让农场高效运转,他必须靠他的工作赚钱,每项工作花一个单位时间。 他的工作日从0时刻开始,有1000000000个单位时间(!)。在任一时刻,他都可以选择编号1~N的N(1 <= N <= 100000)项工作中的任意一项工作来完成。 因为他在每个单位时间里只能做一个工作,而每项工作又有一个截止日期,所以他很难有时间完成所有N个工作,虽然还是有可能。 对于第i个工作,有一个截止时间D_i(1 <= D_i <= 1000000000),如果他可以完成这个工作,那么他可以获利P_i( 1<=P_i<=1000000000 ). 在给定的工作利润和截止时间下,FJ能够获得的利润最大为多少呢?答案可能会超过32位整型。
Input
第1行:一个整数N. 第2~N+1行:第i+1行有两个用空格分开的整数:D_i和P_i.
Output
输出一行,里面有一个整数,表示最大获利值。
Sample Input
3
2 10
1 5
1 7
2 10
1 5
1 7
Sample Output
17
HINT
第1个单位时间完成第3个工作(1,7),然后在第2个单位时间完成第1个工作(2,10)以达到最大利润
题解:贪心,先按起始时间排序。能选就选。然后用堆维护已经选了的收益最小值。如果选不了就去掉收益最小的即可。
代码:
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#define N 100010
using namespace std;
struct use{int st;long long v;}p[N];
priority_queue<long long>q;
bool cmp(use a,use b){return a.st<b.st;}
long long ans;
int main(){
int n,now(0);
scanf("%d",&n);
for (int i=1;i<=n;i++) scanf("%d%lld",&p[i].st,&p[i].v);
sort(p+1,p+n+1,cmp);
for (int i=1;i<=n;i++){
ans+=p[i].v;now++;q.push(-p[i].v);
if (now>p[i].st){ans+=q.top();q.pop();now--;}
}
cout<<ans<<endl;
}