【bzoj3694】【最短路】【树链剖分】

Description

给出一个n个点m条边的无向图,n个点的编号从1~n,定义源点为1。定义最短路树如下:从源点1经过边集T到任意一点i有且仅有一条路径,且这条路径是整个图1到i的最短路径,边集T构成最短路树。  给出最短路树,求对于除了源点1外的每个点i,求最短路,要求不经过给出的最短路树上的1到i的路径的最后一条边。
 

Input

第一行包含两个数n和m,表示图中有n个点和m条边。
接下来m行,每行有四个数ai,bi,li,ti,表示图中第i条边连接ai和bi权值为li,ti为1表示这条边是最短路树上的边,ti为0表示不是最短路树上的边。

Output

输出n-1个数,第i个数表示从1到i+1的要求的最短路。无法到达输出-1。

Sample Input

5 9
3 1 3 1
1 4 2 1
2 1 6 0
2 3 4 0
5 2 3 0
3 2 2 1
5 3 1 1
3 5 2 0
4 5 4 0

Sample Output

6 7 8 5

HINT

 对于100%的数据,n≤4000,m≤100000,1≤li≤100000

题解:首先建出最短路径树。

            对于一条不在最短路径树里的边,设该边的两端点为x,y.t为x和y的最近公共祖先,dis[i]表示1到i的最短距离.

            那么对于x和t之间的点u,一定存在1-t-y-x-u的路径。路径长度为d[y]+v(x,y)+d[x]-d[u].

            我们需要最小化d[x]+d[y]+v(x,y).y和t之间的点同理。

            所以我们枚举每一条不在最短路径树里的边.更新两端点和lca之间的点即可。

            这些显然可以用树链剖分解决。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define N 100010
int pos[N],bl[N],point[N],next[N],t[N*4],p[N*4],size[N];
int f,cnt,num,sz,n,m,x,y,w,fa[N][20],dis[N],deep[N];
struct use{int st,en,w;}e[N];
struct use2{int st,en,w;}b[N];
using namespace std;
void add(int x,int y,int w){next[++cnt]=point[x];point[x]=cnt;e[cnt].en=y;e[cnt].w=w;}
void dfs(int x){
  size[x]=1;
  for (int i=1;(1<<i)<=deep[x];i++) fa[x][i]=fa[fa[x][i-1]][i-1];
  for (int i=point[x];i;i=next[i])
   if (e[i].en!=fa[x][0]){
      deep[e[i].en]=deep[x]+1;dis[e[i].en]=dis[x]+e[i].w;
	  fa[e[i].en][0]=x;dfs(e[i].en);size[x]=size[x]+size[e[i].en]; 
   }
} 
void dfs2(int x,int c){
 pos[x]=++sz;bl[x]=c;int k(0);
 for (int i=point[x];i;i=next[i])
  if (e[i].en!=fa[x][0]&&size[e[i].en]>size[k]) k=e[i].en;
 if (!k) return;dfs2(k,c);
 for (int i=point[x];i;i=next[i])
  if (e[i].en!=fa[x][0]&&e[i].en!=k) dfs2(e[i].en,e[i].en);
}
int lca(int x,int y){
  if (deep[x]<deep[y]) swap(x,y);int d=deep[x]-deep[y];
  for (int i=0;i<=18;i++) if (d&(1<<i)) x=fa[x][i];
  for (int i=18;i>=0;i--) if (fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
  if (x==y) return x;else return fa[x][0]; 
}
void paint(int k,int v){t[k]=min(t[k],v);p[k]=min(p[k],v);}
void pushdown(int k,int v){paint(k<<1,v);paint(k<<1|1,v);p[k]=t[0];} 
void add(int k,int l,int r,int ll,int rr,int v){
  int mid=(l+r)>>1;
  if (p[k]) pushdown(k,p[k]);
  if (ll<=l&&r<=rr){paint(k,v);return;}
  if (ll<=mid) add(k<<1,l,mid,ll,rr,v);
  if (rr>mid) add(k<<1|1,mid+1,r,ll,rr,v);
  t[k]=min(t[k<<1],t[k<<1|1]);	
}
int ask(int k,int l,int r,int x){
 int mid=(l+r)>>1;
 if (p[k]) pushdown(k,p[k]);
 if (l==r) return t[k];
 if (x<=mid) return ask(k<<1,l,mid,x);
 else return ask(k<<1|1,mid+1,r,x);
}
void solveadd(int x,int y,int v){
  while(bl[x]!=bl[y]){
     add(1,1,sz,pos[bl[x]],pos[x],v);
     x=fa[bl[x]][0];
  }
  if (x!=y) add(1,1,sz,pos[y]+1,pos[x],v); 
}
void solve(){
  for (int i=1;i<=num;i++){
  	int f=lca(b[i].st,b[i].en);
  	solveadd(b[i].st,f,dis[b[i].en]+b[i].w+dis[b[i].st]);
  	solveadd(b[i].en,f,dis[b[i].en]+b[i].w+dis[b[i].st]);
  }	
  for (int i=2;i<=n;i++){
  	int f=ask(1,1,sz,pos[i]);
  	if (f==t[0]) printf("-1 ");
  	else printf("%d ",f-dis[i]);
  }
}
int main(){
  scanf("%d%d",&n,&m);memset(t,127,sizeof(t));memset(p,127,sizeof(p));
  for (int i=1;i<=m;i++){
    scanf("%d%d%d%d",&x,&y,&w,&f);
    if (!f) b[++num].st=x,b[num].en=y,b[num].w=w;
    else add(x,y,w),add(y,x,w);
  }	
  dfs(1),dfs2(1,1);solve();
} 


           

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值