Description
要求在平面直角坐标系下维护两个操作:
1.在平面上加入一条线段。记第i条被插入的线段的标号为i。
2.给定一个数k,询问与直线 x = k相交的线段中,交点最靠上的线段的编号。
Input
第一行一个整数n,表示共n 个操作。
接下来n行,每行第一个数为0或1。
若该数为 0,则后面跟着一个正整数 k,表示询问与直线
x = ((k +lastans–1)%39989+1)相交的线段中交点(包括在端点相交的情形)最靠上的线段的编号,其中%表示取余。若某条线段为直线的一部分,则视作直线与线段交于该线段y坐标最大处。若有多条线段符合要求,输出编号最小的线段的编号。
若该数为 1,则后面跟着四个正整数 x0, y0, x 1, y 1,表示插入一条两个端点为
((x0+lastans-1)%39989+1,(y0+lastans-1)%10^9+1)和((x
1+lastans-1)%39989+1,(y1+lastans-1)%10^9+1) 的线段。
其中lastans为上一次询问的答案。初始时lastans=0。
Output
对于每个 0操作,输出一行,包含一个正整数,表示交点最靠上的线段的编号。若不存在与直线相交的线段,答案为0。
Sample Input
1 8 5 10 8
1 6 7 2 6
0 2
0 9
1 4 7 6 7
0 5
Sample Output
0 3
HINT
对于100%的数据,1 ≤ n ≤ 10^5 , 1 ≤ k, x0, x1 ≤ 39989, 1 ≤ y0 ≤ y1 ≤ 10^9。
题解: 用线段树维护每段位置分别被哪条线段覆盖。
插入线段的时候如果这条线段对这个区间有贡献,就把它保留在这个区间。
对于每次查询,从根一直查到底,对中途遇到的线段取最优值即可。
注意处理斜率不存在的线段。
代码:
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#define N 100010
#define P 39989
#define MOD 1000000000
#define eps 1e-10
using namespace std;
int t[N<<2],ansa,n,y,x2,y2,kind,top,a[N],x,lastans;
double b[N],ansb;
struct use{
double k,b;
int l,r;
double f(int x){return k*x+b;}
}line[N];
int cross(use a,use b){
return floor((b.b-a.b)/(a.k-b.k));
}
use cal(int x,int y,int x2,int y2){
use ans;
ans.r=max(x,x2);ans.l=min(x,x2);
if (x2!=x) ans.k=(y2-y)/(double)(x2-x),ans.b=y-ans.k*x;
else ans.k=0.0,ans.b=max(y,y2);
return ans;
}
int check(double x){
return (x>-eps)-(x<eps);
}
void up(int k,int x){
double t=line[k].f(x);
int ff=check(t-b[x]);
if (!a[x]||(ff>0||(ff==0&&k<a[x]))){
a[x]=k;b[x]=t;
}
}
void insert(int k,int l,int r,int x){
if (line[x].l<=l&&r<=line[x].r){
if (!t[k]){t[k]=x;return;}
else{
int fl=check(line[x].f(l)-line[t[k]].f(l))>0;
int fr=check(line[x].f(r)-line[t[k]].f(r))>0;
if (fl&&fr) t[k]=x;
else
if(fl||fr){
int mid=(l+r)>>1;
int p=cross(line[x],line[t[k]]);
if (p<=mid&&fl) insert(k<<1,l,mid,x);
if (p<=mid&&fr) insert(k<<1,l,mid,t[k]),t[k]=x;
if (p>mid&&fl) insert(k<<1|1,mid+1,r,t[k]),t[k]=x;
if (p>mid&&fr) insert(k<<1|1,mid+1,r,x);
}
else up(x,l),up(x,r);
}
return;
}
int mid=(l+r)>>1;
if (line[x].l<=mid) insert(k<<1,l,mid,x);
if (line[x].r>mid) insert(k<<1|1,mid+1,r,x);
}
void query(int k,int l,int r,int x){
if (t[k]){
double tt=line[t[k]].f(x);
int ff=check(tt-ansb);
if ((ff>0||(ff==0&&ansa<t[k]))){
ansa=t[k];ansb=tt;
}
}
if (l==r) return;
int mid=(l+r)>>1;
if (x<=mid) query(k<<1,l,mid,x);
else query(k<<1|1,mid+1,r,x);
}
int main(){
scanf("%d",&n);
for (int i=1;i<=n;i++){
scanf("%d",&kind);
if (kind){
scanf("%d%d%d%d",&x,&y,&x2,&y2);
x=(x+lastans-1)%P+1;x2=(x2+lastans-1)%P+1;
y=(y+lastans-1)%MOD+1;y2=(y2+lastans-1)%MOD+1;
line[++top]=cal(x,y,x2,y2);
//cout<<line[top].k<<' '<<line[top].b<<' '<<line[top].l<<' '<<line[top].r<<endl;
insert(1,1,P,top);
}
else{
scanf("%d",&x);ansa=0;ansb=-1.0;
x=(x+lastans-1)%P+1;
query(1,1,P,x);
int ff=check(b[x]-ansb);
if ((ff>0||(ff==0&&a[x]<ansa))){
ansa=a[x];
}
lastans=ansa;
printf("%d\n",lastans);
}
}
}