【bzoj1941】【sdoi2010】【Hide and Seek】【kd树】

Description

小猪iPig在PKU刚上完了无聊的猪性代数课,天资聪慧的iPig被这门对他来说无比简单的课弄得非常寂寞,为了消除寂寞感,他决定和他的好朋友giPi(鸡皮)玩一个更加寂寞的游戏---捉迷藏。 但是,他们觉得,玩普通的捉迷藏没什么意思,还是不够寂寞,于是,他们决定玩寂寞无比的螃蟹版捉迷藏,顾名思义,就是说他们在玩游戏的时候只能沿水平或垂直方向走。一番寂寞的剪刀石头布后,他们决定iPig去捉giPi。由于他们都很熟悉PKU的地形了,所以giPi只会躲在PKU内n个隐秘地点,显然iPig也只会在那n个地点内找giPi。游戏一开始,他们选定一个地点,iPig保持不动,然后giPi用30秒的时间逃离现场(显然,giPi不会呆在原地)。然后iPig会随机地去找giPi,直到找到为止。由于iPig很懒,所以他到总是走最短的路径,而且,他选择起始点不是随便选的,他想找一个地点,使得该地点到最远的地点和最近的地点的距离差最小。iPig现在想知道这个距离差最小是多少。 由于iPig现在手上没有电脑,所以不能编程解决这个如此简单的问题,所以他马上打了个电话,要求你帮他解决这个问题。iPig告诉了你PKU的n个隐秘地点的坐标,请你编程求出iPig的问题。

Input

第一行输入一个整数N 第2~N+1行,每行两个整数X,Y,表示第i个地点的坐标

Output

一个整数,为距离差的最小值。

Sample Input

4
0 0
1 0
0 1
1 1

Sample Output

1

HINT

对于30%的数据,N<=1000 对于100%的数据,N<=500000,0<=X,Y<=10^8 保证数据没有重点保证N>=2

题解:kd树裸题.

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define inf 2100000000
#define N 500010
using namespace std;
int n,f,x[N],y[N],rt,ans(inf);
struct use{
  int mn[2],mx[2],d[2],l,r;
  int& operator[](int x){
    return d[x];
  }
  friend bool operator<(use a,use b){
      return a[f]<b[f];
  }
  friend int dis(use a,use b){
    return abs(a[0]-b[0])+abs(a[1]-b[1]);
  }
}p[N];
struct kdtree{
  use t[N],T;int ans;
  void update(int x){
  	int l=t[x].l,r=t[x].r;
	for (int i=0;i<=1;i++){
  	  t[x].mn[i]=t[x].mx[i]=t[x][i];
  	  if (l) t[x].mn[i]=min(t[x].mn[i],t[l].mn[i]);
  	  if (l) t[x].mx[i]=max(t[x].mx[i],t[l].mx[i]);
  	  if (r) t[x].mn[i]=min(t[x].mn[i],t[r].mn[i]);
  	  if (r) t[x].mx[i]=max(t[x].mx[i],t[r].mx[i]);
  	} 
  }
  int build(int l,int r,int k){
    f=k;
    int mid=(l+r)>>1;
    nth_element(p+l,p+mid,p+r+1);
    t[mid]=p[mid];
    for (int i=0;i<=1;i++)
      t[mid].mn[i]=t[mid].mx[i]=t[mid][i];
	if (l<mid) t[mid].l=build(l,mid-1,k^1);
    if (r>mid) t[mid].r=build(mid+1,r,k^1);
    update(mid);return mid;
  }
  int getmx(use a){
    int ans(0);
	for (int i=0;i<2;i++)
	  ans+=max(abs(T[i]-a.mx[i]),abs(T[i]-a.mn[i]));
	return ans;	
  }
  int getmn(use a){
    int ans(0);
    for (int i=0;i<2;i++){
      ans+=max(T[i]-a.mx[i],0);
      ans+=max(a.mn[i]-T[i],0);
    }
    return ans;
  }
  void qmx(int x){
    ans=max(ans,dis(t[x],T));
	int l=t[x].l,r=t[x].r,ll=-inf,rr=-inf;
    if (l) ll=getmx(t[l]);if (r) rr=getmx(t[r]);
	if (ll>rr){
	  if (ll>ans) qmx(l);
	  if (rr>ans) qmx(r);
	}
	else{
	  if (rr>ans) qmx(r);
	  if (ll>ans) qmx(l);
	}	 
  }
  void qmn(int x){
    int temp=dis(t[x],T);
    if (temp) ans=min(ans,temp);
    int l=t[x].l,r=t[x].r,ll=inf,rr=inf;
    if (l) ll=getmn(t[l]);if (r) rr=getmn(t[r]);
    if (ll<rr){
       if (ll<ans) qmn(l);
       if (rr<ans) qmn(r);
    }
    else{
       if (rr<ans) qmn(r);
       if (ll<ans) qmn(l);
    }
  }
  int query(int f,int x,int y){
  	T[0]=x;T[1]=y;
  	if (f==0) ans=inf,qmn(rt);
  	else ans=-inf,qmx(rt);
  	return ans;
  }
}kd;
int main(){
  scanf("%d",&n);
  for (int i=1;i<=n;i++) 
    scanf("%d%d",&x[i],&y[i]),p[i][0]=x[i],p[i][1]=y[i];
  rt=kd.build(1,n,0);
  for (int i=1;i<=n;i++){
  	int a=kd.query(0,x[i],y[i]),b=kd.query(1,x[i],y[i]);
  	ans=min(ans,b-a);
  }
  return printf("%d\n",ans),0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值