Description
小猪iPig在PKU刚上完了无聊的猪性代数课,天资聪慧的iPig被这门对他来说无比简单的课弄得非常寂寞,为了消除寂寞感,他决定和他的好朋友giPi(鸡皮)玩一个更加寂寞的游戏---捉迷藏。 但是,他们觉得,玩普通的捉迷藏没什么意思,还是不够寂寞,于是,他们决定玩寂寞无比的螃蟹版捉迷藏,顾名思义,就是说他们在玩游戏的时候只能沿水平或垂直方向走。一番寂寞的剪刀石头布后,他们决定iPig去捉giPi。由于他们都很熟悉PKU的地形了,所以giPi只会躲在PKU内n个隐秘地点,显然iPig也只会在那n个地点内找giPi。游戏一开始,他们选定一个地点,iPig保持不动,然后giPi用30秒的时间逃离现场(显然,giPi不会呆在原地)。然后iPig会随机地去找giPi,直到找到为止。由于iPig很懒,所以他到总是走最短的路径,而且,他选择起始点不是随便选的,他想找一个地点,使得该地点到最远的地点和最近的地点的距离差最小。iPig现在想知道这个距离差最小是多少。 由于iPig现在手上没有电脑,所以不能编程解决这个如此简单的问题,所以他马上打了个电话,要求你帮他解决这个问题。iPig告诉了你PKU的n个隐秘地点的坐标,请你编程求出iPig的问题。
Input
第一行输入一个整数N 第2~N+1行,每行两个整数X,Y,表示第i个地点的坐标
Output
一个整数,为距离差的最小值。
Sample Input
0 0
1 0
0 1
1 1
Sample Output
HINT
对于30%的数据,N<=1000 对于100%的数据,N<=500000,0<=X,Y<=10^8 保证数据没有重点保证N>=2
题解:kd树裸题.
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define inf 2100000000
#define N 500010
using namespace std;
int n,f,x[N],y[N],rt,ans(inf);
struct use{
int mn[2],mx[2],d[2],l,r;
int& operator[](int x){
return d[x];
}
friend bool operator<(use a,use b){
return a[f]<b[f];
}
friend int dis(use a,use b){
return abs(a[0]-b[0])+abs(a[1]-b[1]);
}
}p[N];
struct kdtree{
use t[N],T;int ans;
void update(int x){
int l=t[x].l,r=t[x].r;
for (int i=0;i<=1;i++){
t[x].mn[i]=t[x].mx[i]=t[x][i];
if (l) t[x].mn[i]=min(t[x].mn[i],t[l].mn[i]);
if (l) t[x].mx[i]=max(t[x].mx[i],t[l].mx[i]);
if (r) t[x].mn[i]=min(t[x].mn[i],t[r].mn[i]);
if (r) t[x].mx[i]=max(t[x].mx[i],t[r].mx[i]);
}
}
int build(int l,int r,int k){
f=k;
int mid=(l+r)>>1;
nth_element(p+l,p+mid,p+r+1);
t[mid]=p[mid];
for (int i=0;i<=1;i++)
t[mid].mn[i]=t[mid].mx[i]=t[mid][i];
if (l<mid) t[mid].l=build(l,mid-1,k^1);
if (r>mid) t[mid].r=build(mid+1,r,k^1);
update(mid);return mid;
}
int getmx(use a){
int ans(0);
for (int i=0;i<2;i++)
ans+=max(abs(T[i]-a.mx[i]),abs(T[i]-a.mn[i]));
return ans;
}
int getmn(use a){
int ans(0);
for (int i=0;i<2;i++){
ans+=max(T[i]-a.mx[i],0);
ans+=max(a.mn[i]-T[i],0);
}
return ans;
}
void qmx(int x){
ans=max(ans,dis(t[x],T));
int l=t[x].l,r=t[x].r,ll=-inf,rr=-inf;
if (l) ll=getmx(t[l]);if (r) rr=getmx(t[r]);
if (ll>rr){
if (ll>ans) qmx(l);
if (rr>ans) qmx(r);
}
else{
if (rr>ans) qmx(r);
if (ll>ans) qmx(l);
}
}
void qmn(int x){
int temp=dis(t[x],T);
if (temp) ans=min(ans,temp);
int l=t[x].l,r=t[x].r,ll=inf,rr=inf;
if (l) ll=getmn(t[l]);if (r) rr=getmn(t[r]);
if (ll<rr){
if (ll<ans) qmn(l);
if (rr<ans) qmn(r);
}
else{
if (rr<ans) qmn(r);
if (ll<ans) qmn(l);
}
}
int query(int f,int x,int y){
T[0]=x;T[1]=y;
if (f==0) ans=inf,qmn(rt);
else ans=-inf,qmx(rt);
return ans;
}
}kd;
int main(){
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%d%d",&x[i],&y[i]),p[i][0]=x[i],p[i][1]=y[i];
rt=kd.build(1,n,0);
for (int i=1;i<=n;i++){
int a=kd.query(0,x[i],y[i]),b=kd.query(1,x[i],y[i]);
ans=min(ans,b-a);
}
return printf("%d\n",ans),0;
}