Description
A 国有n 个城市,城市之间有一些双向道路相连,并且城市两两之间有唯一
路径。现在有火车在城市 a,需要经过m 个城市。火车按照以下规则行驶:每次
行驶到还没有经过的城市中在 m 个城市中最靠前的。现在小 A 想知道火车经过
这m 个城市后所经过的道路数量。
Input
第一行三个整数 n、m、a,表示城市数量、需要经过的城市数量,火车开始
时所在位置。
接下来 n-1 行,每行两个整数 x和y,表示 x 和y之间有一条双向道路。
接下来一行 m 个整数,表示需要经过的城市。
Output
一行一个整数,表示火车经过的道路数量。
Sample Input
5 4 2
1 2
2 3
3 4
4 5
4 3 1 5
1 2
2 3
3 4
4 5
4 3 1 5
Sample Output
9
HINT
N<=500000 ,M<=400000
题解:
用并查集来维护点与点之间的联通关系。
初始时不需要经过的点在并查集中指向它的父亲。
需要经过的点指向它自己。
每处理完一次旅行把所有经过的点都缩起来即可。
具体就是把其中需要经过的点指向它的父亲。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#define N 500010
using namespace std;
int m,now,deep[N],point[N],next[N<<1],cnt,ff,f[N],fa[N][20],n,a[N],x,y;
long long ans;
struct use{int st,en;}e[N<<1];
bool vis[N];
void add(int x,int y){next[++cnt]=point[x];point[x]=cnt;e[cnt].en=y;}
int find(int x){if (x==f[x]) return x;return f[x]=find(f[x]); }
void dfs(int x){
for (int i=1;(1<<i)<=deep[x];i++)
fa[x][i]=fa[fa[x][i-1]][i-1];
if (vis[x]) f[x]=fa[x][0];else f[x]=x;
for (int i=point[x];i;i=next[i])
if (e[i].en!=fa[x][0]){
deep[e[i].en]=deep[x]+1;
fa[e[i].en][0]=x;
dfs(e[i].en);
}
}
int lca(int x,int y){
if (deep[x]<deep[y]) swap(x,y);int t=deep[x]-deep[y];
for (int i=0;i<=17;i++) if ((1<<i)&t) x=fa[x][i];
for (int i=17;i>=0;i--)
if (fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
if (x==y) return x;else return fa[x][0];
}
void up(int x){
if (deep[x]<deep[ff]) return;
vis[x]=1;f[x]=fa[x][0];
up(find(fa[x][0]));
}
int main(){
scanf("%d%d%d",&n,&m,&now);memset(vis,1,sizeof(vis));
for (int i=1;i<n;i++){
scanf("%d%d",&x,&y);
add(x,y);add(y,x);
}
for (int i=1;i<=m;i++) scanf("%d",&a[i]),vis[a[i]]=0;
dfs(1);deep[0]=-1;
for (int i=1;i<=m;i++)
if (!vis[a[i]]){
ff=lca(a[i],now);
ans+=(long long)(deep[a[i]]+deep[now]-2*deep[ff]);
up(a[i]);up(now);now=a[i];
}
cout<<ans<<endl;
}