LeetCode 87.Scramble String


Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = "great":

    great
   /    \
  gr    eat
 / \    /  \
g   r  e   at
           / \
          a   t

To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".

    rgeat
   /    \
  rg    eat
 / \    /  \
r   g  e   at
           / \
          a   t

We say that "rgeat" is a scrambled string of "great".

Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".

    rgtae
   /    \
  rg    tae
 / \    /  \
r   g  ta  e
       / \
      t   a

We say that "rgtae" is a scrambled string of "great".

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.



public class Solution {
    public boolean isScramble(String s1, String s2) {
        char[] t1 = s1.toCharArray();
        char[] t2 = s2.toCharArray();
        if (t1.length != t2.length) return false;
        return scramble(t1, 0, t2, 0, t2.length);
    }


    //此方法做出来一下这几点的优化方案:
    //用 字符数组和长度来替代字符串不用每次都切割子串
    // 在判断字符的数组中的元素是否相同的时候少了一个对letter的循环遍历
    private  boolean scramble(char[] s1, int i, char[] s2, int j, int n) {
        //当 n == 1 的时候应该向上回溯
        if (n == 1) return s1[i] == s2[j];

        //判断字符是否相等
        int[] letter = new int[26];
        for (int k = i; k < i+n; k++) {
            ++letter[s1[k]-'a'];
        }
        for (int k = j; k < j+n; k++) {
            //存在不想等的字符
            if (--letter[s2[k]-'a'] < 0)
                return false;
        }
        for (int l = 1; l < n; l++) {
            //将字符数组的前半部分和后半部分分别的进行对比 相当于s.substring()
            if (scramble(s1,i,s2,j,l)
                    && scramble(s1,i+l,s2,j+l,n-l)) return true;
            //将s1前半部分和s2的后半部分对比,
            if (scramble(s1,i,s2,n+j-l,l)
                    && scramble(s1,i+l,s2,j,n-l)) return true;
        }
        return false;
    }

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值