[转]天涯开源key-list类型内存数据引擎——Memlink
来源:http://www.infoq.com/cn/news/2010/11/tianya-memlink
天涯社区最近开发了一款数据引擎——Memlink ,并将其开源。对于为什么会出现这样一款开源项目、它的能力和市面上的其他款同类型项目相比有怎样的优势,InfoQ中文站特地采访了天涯社区在北京研发中心的技术负责人冯勇先生。
1. 您好,能请您先自我介绍一下吗?您最近在做哪些有趣的事情呢?
大家好!我是天涯技术中心系统平台部负责人冯勇,系统平台部是今年刚组建的部门,旨在优化天涯线上产品的系统架构。天涯是一个有十二年历史的网站,对于一个累积了十二年补丁的系统进行重构、优化,本身就是一件很有趣、很有挑战的事情。
2. 是出于什么初衷,天涯会开发出这样一款数据引擎出来呢?并且最后要开源出来。
近些年,Nosql系统非常流行,也确实对sql系统进行了合理补充,为Web应用提供多种数据解决方案。但是在开源Nosql系统中,key-value系统可选择较多,而key-list/queue系统可选择较少,因此我们开发了memlink来满足我们自己的需要。
在这里,需要强调一些key-list的概念,在实际场景中有大量需要key-list的地方。比如:论坛中的主题列表、回复列表,微博中的用户关注列表、用户feed列表、用户关注feed列表等等。如果使用key-value中的value来存储list(比如:list打包成json放入value中),其操作性能是非常低效的。
理想的Key-list通常需要如下特点:
- list是海量的、且操作性能高效
- list是有序的、且可动态调整顺序
至于为什么开源?一方面,我们很多工作都得益于已有的开源系统,所以回馈开源社区是我们应做的义务;另一方面,技术分享也有利于公司本身技术的成长,并吸引更多的技术人才。
3. 能介绍一下Memlink的特性吗?
Memlink是一个高性能、持久化、分布式的Key=>List/Queue数据引擎。正如名称中的Mem所示,所有数据都建构在内存中,保证了系统的高性能,同时使用块链进行内存压缩,使用redo-log技术保证数据的持久化。此外,Memlink还支持主从复制、读写分离、数据项过滤操作等功能。
特点:
- 内存数据引擎,性能极为高效
- List中的Node采用块链组织,精简内存,优化查找效率
- Node数据项可自定义Mask表,支持多种过滤操作
- 支持redo-log,数据持久化,非Cache模式
- 分布式,主从同步
- 读写分离,写优先处理。
4. 我们知道市面上还有一些其他基于内存的数据引擎,比如Redis和Scalaris,跟它们相比Memlink解决了什么特别的问题吗?
在设计和开发memlink之前,我们也认真分析对比了Redis。最终没有采用Redis原因有以下四点:
- Redis持久化策略(redo-log)不能完全满足线上生产的需求。对于一个成熟的互联网应用应该有足够的容错能力。比如系统统重启、宕机等而不丢失数据。Redis持久化策略一:定时同步磁盘(此期间重启会丢失部分数据);持久化策略二:不断追加log,这样容易使log膨胀,性能降低。Memlink持久化策略是同时借鉴Redis两种策略,在非创建快照期间追加redo-log,在完成快照后清除redo-log。
- Redis主从同步策略不够完善。比如:slaver因为某原因丢失了部分同步数据,则需要重新完全获取一份主节点的所有数据。在大数据量的情况下,不太合适线上生产的需求。
- Redis单线程模式,读写没有分离,只能使用单核。Memlink为多线程,充分利用多核,并进行了读写分离,优先保证写。
- 在内存消耗和性能上Memlink要优于Redis。
Memlink是key=>list/queue引擎,Scalaris是key-value,两者功能出发点上不一样。
5. Memlink在天涯内部的哪些系统中得到了采用?可以提供一下Memlink带来的性能变化的数据吗?
Memlink主要应用于天涯论坛类型产品(论坛、来吧)中。比如论坛的主题列表,当数据达到百万、千万量级,采用Mysql系统进行分页浏览时,基本上不能响应,而Memlink则性能提升了上百倍。具体可见Benchmark 。
6. 能向广大的开发者朋友们介绍一下,如何来选择一款适用自己的NoSQL产品呢?
首先需要确定业务需求,是否需要NoSQL产品。对于大多数百万量级、千万量级的应用,MySQL也能支持。
其次在明确需要NoSQL产品后,应根据业务需求抽象出数据模型,比如:有些数据是需要采用key-value系统存储,有些数据是需要采用key-list系统存储,有些数据是采用文档数据库存储等等。
对于NoSQL产品候选列表的选项,可以从如下维度进行考虑:
- 系统的容量、性能、软硬件环境是否符合需求?
- 数据的安全机制如何?各种异常是否会丢失数据?
- 具备主从复制功能?何种一致性策略?
- 可扩展性?自动扩展 or 程序进行扩展?
- 系统的可控性?系统的成熟度、对开发者的支持度、bug谁来修复等等
7. Memlink现在的版本号是多少?未来的发展计划是怎样的?
Memlink现在的版本号为0.2,具备基本key-list/主从复制等功能,目前正在测试中。
在0.3/0.4版本中,Memlink会增加双向队列、用户认证等功能。具体可以见Memlink的RoadMap 。
长远而言,Memlink专注为一个高性能、持久化、分布式的Key=>List/Queue数据引擎,不会增加其他数据存储模型。
更多关于Memlink的信息,请参考Memlink的介绍文档 和设计文档 。
Memlink 介绍文档
为什么会有Memlink?
对于大型论坛服务,比如百度贴吧、天涯论坛,日均发帖量过百万或千万,日均PV过亿,日积月累下来的帖子数量可能几十亿到上百亿。这种超级论坛,其海量存储、海量访问都是一个非常有挑战性的技术难题。
中小规模的论坛(Phpwind/discuz)通常使用mysql/sql server作为后端存储,当数据量膨胀时,比如一个版面有百万、千万级别主贴,一个主贴下有数百万回复,此时使用SQL语句select … order by … limit … 进行数据查询和展现,性能可想而知。
大型论坛中的数据可以抽象为如下三类数据模型:
- Key=>Value结构数据。比如:版面信息、主帖信息、回帖信息等。主贴id对应主贴的信息(标题、发帖时间、作者等等),回帖id对应回贴的信息(回复内容、回复时间、回复者等等)。
- Key=>List结构数据。比如:主贴列表,主贴列表按发表时间或者最后回复时间进行排序;回复列表等等。
Key=>List通常有如下特点:- 可排序
- 可动态调整顺序
- 其他周边数据(SQL系统/检索系统)。比如:斑竹、会员、友情版面/链接等等,由于数据量较小、逻辑关系较复杂,可以使用sql系统存储;比如帖子检索可以使用检索系统。
对于Key=>Value系统,市面上有较多选择,它们的数据容量大小从数百万到上百亿不等,性能、功能也各有差异,由于讨论KV系统的文章很多,再次不赘述。
对于Key=>List系统,市面上可选择的余地非常小,加之线上工业级别的一些要求,经对比了一些Key=>List系统(Redis),最终选择开发memlink系统,同时开源出来,也希望为业界同行提供多一种选择,繁荣开源社区。
Memlink简介
Memlink是一个高性能、持久化、分布式的Key=>List/Queue数据引擎。正如名称中的Memlink所示,所有数据都建构在内存中,保证了系统的高性能(读性能大约是Redis几倍到十倍),精简内存(内存消耗大约是Redis的1/4),使用了redo-log技术保证数据的持久化。此外,Memlink还支持主从复制、读写分离、数据项过滤操作等功能。
特点:
- 内存数据引擎,性能极为高效
- List中的Node采用块链组织,精简内存,优化查找效率
- Node数据项可定义Mask表,支持多种过滤操作
- 支持redo-log,数据持久化,非Cache模式
- 分布式,主从同步
- 读写分离,写优先处理。
与Redis区别
Redis同样也提供key=>list 存储功能,Memlink与Redis区别有:
- Redis比较消耗内存。每个存储节点,在不支持vm的情况下要额外消耗12字节内存,在支持vm的情况下,每个节点额外消耗24字节内存。对于存储上亿条数据来说,额外消耗的内存太大。
- Redis redo-log不够完善。redis提供了两种redo-log机制,机制一:每隔一段时间同步磁盘(此期间重启会丢失部分数据);机制二:追加log方式,会使log文件越来越膨胀,造成性能不优化(需采用额外命令减小log)。
- 主从同步不完善。如果slaver因为某原因丢失了部分同步数据,需要重新完全获取一份主节点的所有数据。在大数据量的情况下,不太合适线上生产的需求。
- 网络处理主事件循环只有一个线程,不能很好的利用多核;同时读写没有分离,没有进行写优先处理。
- List中的Node没有mask表,不能进行一些属性过滤。
Memlink主要对上述特点进行了改进。
性能测试
硬件
- CentOS release 4.6 (Final)
- Kernel 2.6.9-67.0.22.ELsmp 32位
- Memory 4G
- CPU Intel(R) Xeon(R) CPU E5405 @ 2.00GHz (四核)
- Disk 250G SATA
客户端
- 10个客户端,并发短连接
- Memlink内部开启4个处理线程。
- Redis只支持单线程模型。结果表格中的hiredis为使用hiredis客户端测试的结果。redis为官方的redis-benchmark测试结果。
1w | 10w | 100w | 1000w | ||
insert | memlink | 9665 | 9650 | 10078 | 10183 |
hiredis | 9381 | 9489 | 8993 | 8976 | |
redis | 9285 | 9290 | 9287 | 8835 | |
mysql | 5623 | 5621 | 5468 | 5306 | |
range first100 | memlink | 17400 | 17504 | 16614 | 17292 |
hiredis | 1695 | 1637 | 1696 | 1586 | |
redis | 4629 | 4587 | 4504 | 4545 | |
mysql | 2210 | 2286 | 1955 | 1611 | |
range first200 | memlink | 15786 | 15772 | 15964 | 16180 |
hiredis | 711 | 711 | 719 | 692 | |
redis | 2941 | 2949 | 2941 | 2857 | |
mysql | 1444 | 1791 | 1870 | 1402 | |
range first1000 | memlink | 3795 | 3918 | 3703 | 3250 |
hiredis | 118 | 115 | 116 | 114 | |
redis | 761 | 739 | 761 | 735 | |
mysql | 550 | 692 | 620 | 686 | |
range last100 | memlink | 16989 | 16502 | 13118 | 319 |
hiredis | 2132 | 240 | 20 | 2 | |
redis | 4385 | 191 | 19 | 2 | |
mysql | 80 | 8 | 1 | - | |
range last200 | memlink | 15915 | 15596 | 12203 | 316 |
hiredis | 743 | 229 | 20 | 2 | |
redis | 2941 | 182 | 19 | 2 | |
mysql | 94 | 9 | 1 | - | |
range last1000 | memlink | 3893 | 3641 | 3332 | 299 |
hiredis | 120 | 174 | 19 | 2 | |
redis | 756 | 149 | 18 | 2 | |
mysql | 94 | 9 | 1 | - |
详细性能测试请见Benchmark
Client API
客户端命令描述:
命令名 | 类型 | 描述 |
dump | 管理 | 立即复制一份内存数据到磁盘 |
clean | 管理 | 重排某个key下的列表 |
stat | 管理 | 统计信息 |
create | 写 | 创建key |
del | 写 | 删除key下的某个value |
insert | 写 | 在key下的列表中插入一条 |
update | 写 | 更新key下列表中某value在列表中的位置 |
mask | 写 | 修改某个value的mask信息 |
tag | 写 | 标记删除列表中的某个value或者恢复某个value |
rmkey | 写 | 删除一个key,包括它的列表 |
range | 读 | 获取指定key下的列表中的某个范围的value |
count | 读 | 获取指定key下列表的条数 |
详细客户端API请见ClientAPI
谁在使用?
目前Memlink应用于天涯来吧、天涯论坛系统。 未来Memlink的Key=>Queue会应用在天涯微博系统上。
未来
Memlink是专注于Key => List/Queue对象的存储系统,它内存使用更精简、性能更高效。 Key => List/Queue系统作为Key => Value另一种形式补充,为高性能、海量数据的Web应用提供了新的数据存储模型选择。
FAQ
- 为什么Memlink的读速度会比Redis快?
这是内部存储数据结构决定的。Redis内部是一个链表。Memlink内部同样是链表,不同的是memlink把N个节点组织到了一个链表数据块内,这样循环查找位置的时候,Memlink理论上最好情况,循环次数比Redis少N倍(N可配置,默认为100)。
- 为什么在多线程并发的情况下Memlink比Redis读速度快很多?
因为Memlink读数据是完全多线程的,并且没有同步锁,可以利用到多核。而Redis在读取数据上是单核的。
其他:
Memlink 项目主页:http://code.google.com/p/memlink
介绍文档:http://code.google.com/p/memlink/wiki/Introduce
详细设计:http://code.google.com/p/memlink/wiki/DesignDocument
性能测试:http://code.google.com/p/memlink/wiki/Benchmark