写在前面:
此文为一个简单的风控决策模型的开发逻辑及细节,仅供科技金融领域做风控建模的新手参考,具备能够看懂并且尝试风控模型开发及部署的能力。
跃跃欲试吧。
【博客地址】:https://blog.csdn.net/sunyaowu315
【博客大纲地址】:https://blog.csdn.net/sunyaowu315/article/details/82905347
另附Tech Fin微信社群,感兴趣可添加微信wu805686220,备注研习社+姓名,邀您进群:
社群面向所有金融领域风险管理人员、数据分析人员。旨在扎根TechFin,了解科技金融业务、管理、技术方面的知识,研讨包括分类聚类关联、UML、复杂网络、社交图谱、模糊匹配、分团集群、推荐算法等机器学习技术在自识别交叉营销和全自动风险管理方面的应用。

一 模型开发流程
1、模型开发
(1)数据源测试: 测试需要对接的三方数据源,可分为线下测试和线上测试两种。通过类似覆盖率、交叉矩阵、KS等指标判断数据质量。
(2)aip测试接口对接:如果数据源质量ok,开发人员对接数据源接口,取数调参。
(3)函数式编程代码块:代码结构化分块编程,防止重复编写,同样提升调用效率。
2、模型部署
(1)路由配置
大数据风控模型开发与代码逻辑详解

这篇博客详细介绍了风控模型的开发流程,包括数据源测试、接口对接、函数式编程,以及模型部署、监测和调优。同时,阐述了代码逻辑,从测试文件、模型解释器、数据源、规则集到机器学习模型的步骤。适合科技金融领域的风控建模新手参考。
最低0.47元/天 解锁文章
2862





