Hash Function 牛客网多校

https://www.nowcoder.com/acm/contest/142/J

这题竟然卡memset.. 一开始t了以为数组开小了 就往大了搞..

首先是判矛盾 如果i位置上的一个数ary[i] 本来应该在ary[i]%n=j处 那j到i之间肯定不能有负数 前缀和判断一下

如果暂时没矛盾 那就将从j到i-1的位置都向i连一条边 因为ary[i]这个数会出现在i这个位置就是因为j到i-1都被别的数占了 这个过程用线段树优化 然后拓扑排序判环 同时把队列带上优先级 因为题目要求字典序最小

至于线段树建图后的度数关系 一开始想的是提前记录下线段树每个节点对应的区间长度 但其实和区间长度没有一点关系 因为子区间度数不为零 那父区间也不可能被遍历

还有就是如果队列中有非线段树叶节点(即代表区间长度大于1的节点)的话 要先把这些节点弹出然后松弛其他点 因为可能会有更小的符合拓扑关系的数被这些非叶节点盖住

#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;

struct node1
{
    int v;
    int next;
};

struct node2
{
    bool friend operator < (node2 n1,node2 n2)
    {
        return n1.val>n2.val;
    }
    int id;
    int val;
};

node1 edge[6400010];
int ary[200010],pre[200010],ans[200010],mp1[200010],mp2[1600010],first[1600010],degree[1600010];
int n,num,tot,cnt;

inline void addedge(int u,int v)
{
    edge[num].v=v;
    edge[num].next=first[u];
    first[u]=num++;
    degree[v]++;
}

void build(int l,int r,int cur)
{
    int m;
    mp2[cur]=-2;
    if(l==r)
    {
        mp1[l]=cur,mp2[cur]=l;
        tot=max(tot,cur);
        return;
    }
    addedge(2*cur,cur);
    addedge(2*cur+1,cur);
    m=(l+r)/2;
    build(l,m,2*cur);
    build(m+1,r,2*cur+1);
}

inline void update(int pl,int pr,int tar,int l,int r,int cur)
{
    int m;
    if(pl<=l&&r<=pr)
    {
        addedge(cur,mp1[tar]);
        return;
    }
    m=(l+r)/2;
    if(pl<=m) update(pl,pr,tar,l,m,2*cur);
    if(pr>m) update(pl,pr,tar,m+1,r,2*cur+1);
}

void toposort()
{
    priority_queue <node2> que;
    node2 cur,tmp;
    int i,u,v;
    num=0;
    for(i=0;i<n;i++)
    {
        if(ary[i]!=-1) num++;
    }
    for(i=1;i<=tot;i++)
    {
        if(mp2[i]!=-1&&degree[i]==0)
        {
            tmp.id=i,tmp.val=ary[mp2[i]];
            que.push(tmp);
        }
    }
    cnt=0;
    while(!que.empty())
    {
        cur=que.top();
        que.pop();
        u=cur.id;
        if(mp2[u]!=-2&&cur.val!=-1) ans[cnt++]=cur.val;
        for(i=first[u];i!=-1;i=edge[i].next)
        {
            v=edge[i].v;
            degree[v]--;
            if(degree[v]==0)
            {
                tmp.id=v;
                if(mp2[v]!=-2) tmp.val=ary[mp2[v]];
                else tmp.val=-1;
                que.push(tmp);
            }
        }
    }
    if(cnt<num) printf("-1\n");
    else
    {
        if(cnt==0) printf("\n");
        else
        {
            for(i=0;i<cnt;i++)
            {
                printf("%d",ans[i]);
                if(i<cnt-1) printf(" ");
                else printf("\n");
            }
        }
    }
}

int main()
{
    int t,i,p,gou,flag;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        pre[n]=0;
        for(i=0;i<n;i++)
        {
            scanf("%d",&ary[i]);
            if(ary[i]==-1) pre[i]=1;
            else pre[i]=0;
        }
        for(i=0;i<n;i++)
        {
            if(i!=0) pre[i]+=pre[i-1];
        }
        for(i=1;i<=4*n;i++)
        {
           first[i]=-1;
           degree[i]=0;
           mp2[i]=-1;
        }
        num=0,tot=0;
        build(0,n-1,1);
        flag=1;
        for(i=0;i<n;i++)
        {
            if(ary[i]==-1) continue;
            p=ary[i]%n;
            if(p<i)
            {
                if(p==0) gou=0;
                else gou=pre[p-1];
                if(pre[i-1]-gou>0)
                {
                    flag=0;
                    break;
                }
                update(p,i-1,i,0,n-1,1);
            }
            else if(p>i)
            {
                if(pre[i-1]+pre[n-1]-pre[p-1]>0)
                {
                    flag=0;
                    break;
                }
                update(p,n-1,i,0,n-1,1);
                if(i>0) update(0,i-1,i,0,n-1,1);
            }
        }
        if(flag) toposort();
        else printf("-1\n");
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值