tensorflow 基本操作以及函数介绍

1.创建一个tensor(张量)

# tf.ones(维度)   创建全为1的张量
# tf.zeros(维度)   创建全为0的张量
# tf.fill(维度,指定值)  创建全为指定值的张量

a=tf.ones([2,3])
b=tf.zeros([2,3])
c=tf.fill([2,3],4)

print(a)
print(b)
print(c)

在这里插入图片描述

2.随机生成张量

# tf.random.normal(维度=,mean=均值,stdded=标准差)  生成正态分布的随机数
a=tf.random.normal([2,4],mean=1,stddev=1)
print(a)

在这里插入图片描述

3. tensorflow 常用函数(求最大,最小,均值)

# tf.cast(张量名,dtype=数据类型)    强制转换张量类型
# tf.reduce_min(张量名)              计算张量维度元素上最小值
# tf.reduce_max(张量名)              计算张量维度元素上最大值
# tf.reduce_mean(张量名)             计算张量维度元素上均值

a=tf.constant([1,2,3,4],dtype=tf.float64)
print("原张量:")
print(a)
b=tf.cast(a,dtype=tf.int64)
print("\n转换后的张量:")
print(b)
print("\n张量中最小元素:")
print(tf.reduce_min(a))
print("\n张量中最大元素:")
print(tf.reduce_max(a))
print("\n张量中元素平均值:")
print(tf.reduce_mean(a))

在这里插入图片描述

4.tensorflow常用函数(对应元素加减乘除)

# tf.add(张量1,张量2)         两张量对应元素相加
# tf.subtract(张量1,张量2)    两张量对应元素相减
# tf.multiply(张量1,张量2)    两张量对应元素相乘
# tf.divide(张量1,张量2)      两张量对应元素相除

a=tf.fill([2,3],2)
b=tf.fill([2,3],3)
print(a)
print(b)
print("\n张量相加:")
print(tf.add(a,b))
print("\n张量相减:")
print(tf.subtract(a,b))
print("\n张量相乘:")
print(tf.multiply(a,b))
print("\n张量相除:")
print(tf.divide(a,b))

在这里插入图片描述

5.tensorflow常用函数(矩阵相乘)

# tf.matmul(矩阵1,矩阵2)  计算两矩阵相乘

a=tf.ones([2,3])
b=tf.fill([3,2],3.)
print(a)
print(b)
print("\n矩阵a与b相乘结果:")
print(tf.matmul(a,b))
print("\n矩阵b与a相乘结果:")
print(tf.matmul(b,a))

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值