用回溯的思想解决排列问题

最近想要好好学一下算法,但是老觉得无从下手,论坛上有童鞋推荐一个台湾的网站http://www.csie.ntnu.edu.tw

觉得很不错,这里就当是个学习日志吧。。就是代码有的地方有些小问题

1. 最常见的问题:有一个集合,1-N共N个元素,输出可能的全排列。

#include<iostream>
using namespace std;

int solution[5];
bool used[6];

void backtracking(int n) {
	
	if(n == 5) {
		for(int i = 0; i < 5; i++)
			cout << solution[i] << " ";
		cout << endl;
		return;
		}
	
	for(int i = 1; i <= 5; i++) {
		if(!used[i]) {
			used[i] = true;
			
			solution[n] = i;
			backtracking(n + 1);
			
			used[i] = false;
			}
		}
	
	}
	
int main() {
	
	for(int i = 1; i <= 5; i++)
		used[i] = false;
		
	backtracking(0);
	return 0;
		
	}


2.   如果是换成字符串,也是一样的, 但是要考虑如果有相同的字符,例如abbcc这种,需要在回溯的时候注意区分,如果之前已经在相应的位置用过就跳过本次操作

#include<iostream>
using namespace std;

//int solution[5];
bool used[6];
char s[5] = {'a', 'b', 'b',  'c', 'c'};
char solution[5];

void backtracking(int n) {

        if(n == 5) {
                for(int i = 0; i < 5; i++)
                        cout << solution[i];
                cout<<endl;
                return;
        }

        char last_letter = '\0';
        for(int i = 0; i < 5; i++) {
                if(used[i]) continue;
                if(s[i] == last_letter) continue;

                        last_letter = s[i];
                        used[i] = true;

                        solution[n] = s[i];
                        backtracking(n+1);

                        used[i] = false;
        }
}


int main() {

        for(int i = 0; i < 5; i++)
                used[i] = false;

        backtracking(0);  
        return 0;
}

3.给定一个集合类似{0,1,2,3,4},求出所有的子集合

#include<iostream>
using namespace std;

int array[5] = {0, 1, 2, 3, 4};
int subset[5];

void backtracking(int i, int n) {

        if(i == 5) {
                for(int i = 0; i < n; i++) 
                        cout << subset[i] << " ";
                cout << endl;
                return;
        }

        subset[n] = array[i];// choose this value into the subset
        backtracking(i + 1, n + 1);

        backtracking(i + 1, n);//don't choose the value and continue to backtrack
}

int main() {

        backtracking(0, 0);
        return 0;
        }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值