机器学习算法:基于企鹅数据集的决策树分类预测

1 逻决策树的介绍和应用

1.1 决策树的介绍

决策树是一种常见的分类模型,在金融风控、医疗辅助诊断等诸多行业具有较为广泛的应用。决策树的核心思想是基于树结构对数据进行划分,这种思想是人类处理问题时的本能方法。例如在婚恋市场中,女方通常会先询问男方是否有房产,如果有房产再了解是否有车产,如果有车产再看是否有稳定工作……最后得出是否要深入了解的判断。

主要应用:

由于决策树模型中自变量与因变量的非线性关系以及决策树简单的计算方法,使得它成为集成学习中最为广泛使用的基模型。梯度提升树(GBDT),XGBoost以及LightGBM等先进的集成模型都采用了决策树作为基模型,在广告计算、CTR预估、金融风控等领域大放异彩,成为当今与神经网络相提并论的复杂模型,更是数据挖掘比赛中的常客。在新的研究中,南京大学周志华教授提出一种多粒度级联森林模型,创造了一种全新的基于决策树的深度集成方法,为我们提供了决策树发展的另一种可能。

同时决策树在一些明确需要可解释性或者提取分类规则的场景中被广泛应用,而其他机器学习模型在这一点很难做到。例如在医疗辅助系统中,为了方便专业人员发现错误,常常将决策树算法用于辅助病症检测。例如在一个预测哮喘患者的模型中,医生发现测试的许多高级模型的效果非常差。在他们运行了一个决策树模型后发现,算法认为剧烈咳嗽的病人患哮喘的风险很小。但医生非常清楚剧烈咳嗽一般都会被立刻检查治疗,这意味着患有剧烈咳嗽的哮喘病人都会马上得到收治。用于建模的数据认为这类病人风险很小,是因为所有这类病人都得到了及时治疗,所以极少有人在此之后患病或死亡。

1.2 相关流程

  • 了解 决策树 的理论知识
  • 掌握 决策树 的 sklearn 函数调用并将其运用在企鹅数据集的预测中

Part1 Demo实践

  • Step1:库函数导入
  • Step2:模型训练
  • Step3:数据和模型可视化
  • Step4:模型预测

Part2 基于企鹅(penguins)数据集的决策树分类实践

  • Step1:库函数导入
  • Step2:数据读取/载入
  • Step3:数据信息简单查看
  • Step4:可视化描述
  • Step5:利用 决策树模型 在二分类上 进行训练和预测
  • Step6:利用 决策树模型 在三分类(多分类)上 进行训练和预测

3 算法实战

3.1Demo实践

Step1: 库函数导入

##  基础函数库
import numpy as np 

## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns

## 导入决策树模型函数
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree

Step2: 训练模型

##Demo演示LogisticRegression分类

## 构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 1, 0, 1, 0, 1])

## 调用决策树回归模型
tree_clf = DecisionTreeClassifier()

## 调用决策树模型拟合构造的数据集
tree_clf = tree_clf.fit(x_fearures, y_label)

Step3: 数据和模型可视化(需要用到graphviz可视化库)

## 可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')
plt.show()

## 可视化决策树
import graphviz
dot_data = tree.export_graphviz(tree_clf, out_file=None)
graph = graphviz.Source(dot_data)
graph.render("pengunis")
'pengunis.pdf'

Step4:模型预测

## 创建新样本
x_fearures_new1 = np.array([[0, -1]])
x_fearures_new2 = np.array([[2, 1]])

## 在训练集和测试集上分布利用训练好的模型进行预测
y_label_new1_predict = tree_clf.predict(x_fearures_new1)
y_label_new2_predict = tree_clf.predict(x_fearures_new2)

print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)
The New point 1 predict class:
 [1]
The New point 2 predict class:
 [0]

3.2 基于penguins_raw数据集的决策树实战

在实践的最开始,我们首先需要导入一些基础的函数库包括:numpy (Python进行科学计算的基础软件包),pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具),matplotlib和seaborn绘图。

#下载需要用到的数据集
!wget https://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/6tree/penguins_raw.csv
--2023-03-22 16:21:32--  https://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/6tree/penguins_raw.csv
正在解析主机 tianchi-media.oss-cn-beijing.aliyuncs.com (tianchi-media.oss-cn-beijing.aliyuncs.com)... 49.7.22.39
正在连接 tianchi-media.oss-cn-beijing.aliyuncs.com (tianchi-media.oss-cn-beijing.aliyuncs.com)|49.7.22.39|:443... 已连接。
已发出 HTTP 请求,正在等待回应... 200 OK
长度: 53098 (52K) [text/csv]
正在保存至: “penguins_raw.csv”

penguins_raw.csv    100%[===================>]  51.85K  --.-KB/s    in 0.04s   

2023-03-22 16:21:33 (1.23 MB/s) - 已保存 “penguins_raw.csv” [53098/53098])

Step1:函数库导入

##  基础函数库
import numpy as np 
import pandas as pd

## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns

本次我们选择企鹅数据ÿ

基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.z
基于STM32智能循迹避障小车源码(高分项目),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

supeerzdj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值