相同名字比对公式,相似度对比算法

本文探讨了公司注册时如何界定名称相似性,并介绍了比对算法在处理百万级数据中的应用,涉及Hadoop分布式系统。文章提到了Excel匹配相似度的计算方法,以及SQL中高效比对字符串相似度的策略。此外,还讨论了在两个大型“0-1”字符串间计算相似度的算法选择,并提到Excel中比对相似度的技巧。最后,文章提及了文本相似度比对在处理两句话意义相似情况下的应用,并简述了数据库查询和序列比对的相关概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

公司注册:公司名称相似如何认定?

公司名称相似有两种:名字当中的文字有与其它公司重叠(三个字有两个相同)、不同经营类型的公司名称,比如:“XX市美好家具贸易有限公司”和“XX市美好沐足服务有限公司”属于公司名称相似。

拓展资料:公司注册名称字号重复怎么办公司名称字号如果重复的话是可以进行修改,然后重新选择注册的,不过公司注册名称字号重复并不一定是不能用的,得分辖区,分是不是驰名商标,有没有特别保护。

在登记主管机关辖区内不得与登记注册的同行业企业名称相同或者近似;不在同一省,工商登记机关也不同,是可以用相同的名字的。

除非是驰名商标可以跨地区跨类别进行保护外,其他企业的名称仅仅局限于登记机关辖区和相应的类别内进行保护。

两个公司名称已构成相同且在同一行业内,即违反“申请的字号不得与同一工商行政管理局核准或登记注册的同行企业名称相同,有投资关系的除外”的原则,很可能无法通过名称预先核准。

注册企业时名标相同相近比对规则:第一条:为进一步推进企业名称登记管理改革,建立、完善企业名称比对系统,为申请人提供高效比对服务,依据《企业名称登记管理规定》《企业名称登记管理实施办法》《工商总局关于提高登记效率积极推进:业名称登记管理改革的意见》(工商企注字2017)54号)等制定本规则。

第二条:本规则适用于企业登记机关利用信息化技术,建立、完善企业名称比对系统,为申请人申请企业名称提供比对服务。企业登记机关应当将比对结果以在线网页等方式皇现给申请人,供其参考、选择。

第三条:申请人提交的企业名称登记、核准申请有下列情形之一的,比对系统提示为企业名称相近。(一)与同一企业登记机关已登记、核准的企业名称完全相同。

(二)与同一企业登记机关已登记、核准的企业名称行政区划、字号、行业和组织形式排列顺序不同但文字相同。如:北京红光酒业发展有限公司与红光(北京)酒业发展有限公司。

(三)与同一企业登记机关已登记、核准的企业名称字号、行业文字相同但行政区划或者组织形式不同。第四条:申请人提交的企业名称登记、核准申请有下列情形之一的,比对系统提示为企业名称相近。

(一)与同一企业登记机关已登记、核准的同行业企业名称字号相同,行业表述不同但含义相同。(二)与同一企业登记机关已登记、核准的同行业企业名称字号的字音相同,行业表述相同或者行业表述不同但内容相同。

(三)字号包含同一企业登记机关已登记、核准同行业企业名称字号或者被其包含,行业表述相同或者表述不同但内容相同(四)字号与同一企业登记机关已登记、核准同行业企业名称字号部分字音相同,行业表述相同或者行业述不同但内容相同。

如:北京阿里巴巴科技有限公司与北京马云阿理巴巴科技有限公司、北京阿理巴巴金控技术有限公司。

(五)不含行业表述或者以实业、发展等不使用国民经济行业分类用语表述行业的,包含或者被包含同一企业登记机关已登记、核准的同类别企业名称的字号,或者其字号的字音相同,或者其包含、被包含的部分字音相同。

第五条:申请人通过比对系统查询申请企业名称时,拟申请的企业名称与同一企业登记机关已登记、核准的企业名称相同的,列出相同的企业名称,提示该申请不能通过;拟申请的企业名称与同一企业登记机关已登记、核准的企业名称相近的,列出相近的企业名称清单,提示该申请可以通过,但存在审核不予核准的可能存在虽然核准,但在使用中可能面临侵权纠纷,甚至以不适宜的企业名称被强制变更的风险。

第六条:地方企业登记机关可以根据地方政府要求、改革需要和技术条件等,细化比对规则,不断提高比对智能化服务水平。第七条:农民专业合作社、个体工商户名称和非法人分支机构(营业单位)的比对,参照本规则执行。

第八条:本规则由工商总局解释。

谷歌人工智能写作项目:神经网络伪原创

我做了个相似性的算法,要与数据库上百万比对,其他一些网站都用了Hadoop分布式,知网也是这样的吗? 50

引言Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统写作猫。它和现有的分布式文件系统有很多共同点。

但同时,它和其他的分布式文件系统的区别也是很明显的。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。

HDFS放宽了一部分POSIX约束,来实现流式读取文件系统数据的目的。HDFS在最开始是作为Apache Nutch搜索引擎项目的基础架构而开发的。

HDFS是Apache Hadoop Core项目的一部分。这个项目的地址是。前提和设计目标硬件错误硬件错误是常态而不是异常。

HDFS可能由成百上千的服务器所构成,每个服务器上存储着文件系统的部分数据。我们面对的现实是构成系统的组件数目是巨大的,而且任一组件都有可能失效,这意味着总是有一部分HDFS的组件是不工作的。

因此错误检测和快速、自动的恢复是HDFS最核心的架构目标。流式数据访问运行在HDFS上的应用和普通的应用不同,需要流式访问它们的数据集。HDFS的设计中更多的考虑到了数据批处理,而不是用户交互处理。

比之数据访问的低延迟问题,更关键的在于数据访问的高吞吐量。POSIX标准设置的很多硬性约束对HDFS应用系统不是必需的。为了提高数据的吞吐量,在一些关键方面对POSIX的语义做了一些修改。

大规模数据集运行在HDFS上的应用具有很大的数据集。HDFS上的一个典型文件大小一般都在G字节至T字节。因此,HDFS被调节以支持大文件存储。

它应该能提供整体上高的数据传输带宽,能在一个集群里扩展到数百个节点。一个单一的HDFS实例应该能支撑数以千万计的文件。简单的一致性模型HDFS应用需要一个“一次写入多次读取”的文件访问模型。

一个文件经过创建、写入和关闭之后就不需要改变。这一假设简化了数据一致性问题,并且使高吞吐量的数据访问成为可能。Map/Reduce应用或者网络爬虫应用都非常适合这个模型。

目前还有计划在将来扩充这个模型,使之支持文件的附加写操作。“移动计算比移动数据更划算”一个应用请求的计算,离它操作的数据越近就越高效,在数据达到海量级别的时候更是如此。<

<think>好的,用户想了解音频相似度对比的方法、工具和库。我需要结合之前提供的引用内容,整理出一个全面的回答。首先,用户提到的引用中有几个工具,比如AudioCompare,这是一个命令行工具,可以比较音频文件的相似性,适用于寻找重复或相似内容的情况。还有引用4提到的Python实现,里面提到了余弦相似度的问题,需要注意特征量纲的处理。 用户可能需要技术上的方法,比如特征提取、相似度计算算法。常见的特征有时域、频域、MFCC等。然后需要介绍具体的计算步骤,比如动态时间规整(DTW)或余弦相似度。不过引用4提到余弦相似度可能不准确,因为特征量纲不同,可能需要标准化处理。 工具方面,除了AudioCompare,还有librosa这样的Python库,用于音频处理,提取特征。还有像Essentia、pyAudioAnalysis这些库可能也相关。需要分点列出,说明每个工具或库的功能和适用场景。 用户可能的应用场景包括版权检测、音乐推荐、语音识别等,引用2和3都提到了这些,可以引用过来。需要注意用户可能对技术细节不太熟悉,所以需要解释清楚每个方法的原理,同时提供实际应用的例子,比如使用librosa提取MFCC特征,然后用DTW计算相似度。 另外,用户可能对如何选择工具或方法有疑问,需要给出建议,比如处理少量文件可以用工具,开发需求则用库。还要提到注意事项,比如预处理的重要性,特征选择和参数调整的影响。 最后,生成相关问题,比如如何评估相似度算法的准确性,或者如何处理不同格式的音频文件,这些能帮助用户进一步探索。确保回答结构清晰,分点说明,引用正确的来源,比如AudioCompare在引用1和3中提到,相似度应用场景参考引用2。</think>### 音频相似度对比方法与工具详解 #### 一、核心方法 1. **特征提取** - **时域特征**:提取音频的波形统计量,如均值、方差、峰值等$[^2]$。 - **频域特征**:通过FFT转换到频域,分析频谱能量分布,例如梅尔频率倒谱系数(MFCC)$[^4]$。 - **高级特征**:使用预训练模型(如VGGish、OpenL3)提取语义特征$[^2]$。 2. **相似度计算** - **动态时间规整(DTW)**:适用于对齐长度不同的时间序列(如语音节奏对比)$[^4]$。 - **余弦相似度**:需对特征向量标准化处理,避免量纲差异问题,公式为: $$ \text{similarity} = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} $$ - **交叉相关法**:直接比对波形相似性,常用于简单场景。 --- #### 二、主流工具与库 1. **AudioCompare** - **功能**:命令行工具,支持批量音频相似度检测,适合版权检测和媒体管理$[^1][^3]$。 - **特点**:自动标记匹配文件,开源可定制(项目地址:[GitCode链接](https://gitcode.com/open-source-toolkit/160c5))$[^3]$。 2. **Python库** - **Librosa** ```python import librosa y1, sr1 = librosa.load('audio1.wav') mfcc1 = librosa.feature.mfcc(y=y1, sr=sr1) ``` 用于提取MFCC、色度特征等。 - **Essentia**:支持音乐特征提取与相似度计算,集成多种算法。 - **pyAudioAnalysis**:提供预封装函数,支持分类和相似度分析$[^2]$。 3. **深度学习框架** - **TensorFlow/PyTorch**:结合预训练模型(如VGGish)生成特征向量,再计算相似度$[^4]$。 --- #### 三、应用场景 1. **音乐版权检测**:识别翻唱或抄袭片段(如AudioCompare的典型用途)$[^3]$。 2. **语音指令匹配**:对比用户语音与模板的相似性。 3. **推荐系统**:基于音频特征相似性推荐歌曲$[^2]$。 --- #### 四、选择建议 - **工具**:若需快速批量处理,优先选择AudioCompare$[^3]$。 - **开发需求**:选择Python库(如Librosa+DTW)实现灵活控制。 - **注意事项**: - 预处理(降噪、归一化)对结果影响显著。 - 长音频需分帧处理,避免计算复杂度爆炸。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值