记elasticsearch CPU负载100%问题

环境:

单台2核4G的阿里云ecs,部署单node的elasticsearch+kibana。
测试环境,刚上手elasticsearch学习用。本来是构建LLM的RAG系统的,结果突然来了个100%CPU占用,而且居高不下,没办法,干回老本行,运维工程师,启动!

问题表现:

在上午9.50分开始,阿里云控制台可看见ecs的CPU从原本的4%占用左右,快速飙到了100%,并且长时间居高不下。
上可以看到

初步排查:

日志

先看日志,通过正则筛选elasticsearch.log中9.40-50分中的所有日志。

cd /var/log/elasticsearch
grep "^\[2024-01-31T09:[4-5]" elasticsearch.log

可以见到,日志中有多段如下日志。其主要内容是Grok在对非结构化数据的正则匹配,提取信息。而我从未进行过任何的Grok配置与操作。
在这里插入图片描述

查询hot_thread

elasticsearch的API中,提供了一个查询当前node中资源占用量大的进程的接口。

GET /_nodes/hot_threads

查询结果如下,可以详细看到,这些进程大部分都在进行正则匹配的工作,和之前log中看到的一致。并且,下方textstructure.structurefinder这个类,即是Gork提取非结构化数据信息的类。
在这里插入图片描述

深入

查询当前elasticsearch正在运行的Task

通过API,可以详细的查找到当前elasticsearch中,正在运行的Task的详细内容。

GET /_cat/tasks?v&detailed=true

可以看到,其中存在几个text_structure/findstructure的Task,和hot_thread中看到的一致,并且启动的时间也基本对应CPU升高的时间。
在这里插入图片描述

查看Task详情

通过通配符匹配,查询这几个Task的详细信息。

GET /_tasks?detailed=true&actions=*/text_structure/findstructure

可以看到,这几个任务的Type为Transport的类型。
从elasticsearch文档中,可以看到,Transport类型的任务的主要功能是:
在这里插入图片描述
到这,卡住了
transport类型,一般的node之间通信的任务,但是我是单node

所以我又找到,发现我创建的index,默认replica=1,即分片有一个备份,而我是单node,备份必须是存储在不同的node上,导致备份分片一直不能被分配,使得index状态处于yellow状态。

但是不确定这个和我当前的任务是否有关系

好了,更新的replica,但是问题还在,现在index都是绿的了

解决问题

重启解决问题,重启后,所有的structurefinder进程都消失了
OK,不用查了,es崩了,直接重启了。
在此之前,还检查了是否是pipeline的问题,但是pipeline都没有在使用。
OK,重启了,之前看到的structurefinder进程都没有了,CPU也降下来。
问题虽然解决,但是还是不知道为啥。

对导致问题的原因的几个猜测

几个怀疑:看看之后我会不会再复现这个问题

  1. 多副本问题,导致有副本切片一直没有合适的node分配(但是不应该占用CPU啊?
  2. 因为导入的时候,使用了默认的pipeline,导致对导入的数据,进行的非结构化分析和提取,导致CPU占用高。(但是,不应该一直持续存在吧?
  3. 中间有玩了一次,kibanaUI界面,添加集成,直接上传了一个json格式的问题,不知道是不是这个问题。返回的结果是失败,说需要结构化的数据?并且是请求超时(我认为这个最有可能)。

问题复现:

因为对于原因3最为怀疑,而且确实时间点也对的上,就是上传完之后开始CPU飙升,同时上传失败的返回也确实怪怪的。所以重新上传。
json内容:值为中文的unicode
在这里插入图片描述

重新上传之后,仍然是以下的问题。
在这里插入图片描述
再次查看,发现CPU又100%负载了。并且之前的structurefinder进程又出现:
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

导致问题的原因。

那么基本可以确定,就是在解析上传的文件时,通过grok尝试解析,失败后,却没有关闭进程。从而导致CPU不断被占用。
而上图UI界面中返回的Request:time out 基本可以确定是structurefinder在尝试解析json内容时,花费的时间太久从而返回的time out。

json导入规则问题

只是问题是,为什么我的json文件,会解析这么久,并且仍然没有结束。上午的解析进程,最长的一个运行了近6个消失,但是仍然没有结果。
我的json文件,是python直接dump出来的,并且json格式校验也没有问题。

json导入规则问题解决

因为es要求的上传的json格式为ndjson。即换行符分割的json,每一行都是一个完整的json对象。
而我上传的,只是传统json格式,导致无法解析。

中英文非ndjson格式数据上传问题

仍然还有一个问题没有解决:
当一个英文的非ndjson格式的json被上传时,会报错非ndjson格式。直接返回,没有timeout
当一个unicode中文的非ndjson的json被上传时,会直接无限等待,导致CPU100%占用,返回timeout。并且后台持续存在一个task在进行解析,并且不结束,占用CPU100%

中英文非ndjson格式数据问题解决

我又去看了一遍hot_thread,可以看到这里的进程中,主要的函数是log Text Structure Finder。即对log的格式解析。
在上传文件时,es有明确,可以上传带标准时间戳格式的log问题。
在这里插入图片描述
由此推测:当unicode的json被上传后,不符合ndjson,但是不知为何,被当作了log去解析,而又并非log,导致了一些奇奇怪怪的bug,导致解析的进程无限等待,并没有进入任何一个错误返回。从而导致timeout,同时解析的进程卡死,CPU占用100%
而英文可能更方便,所以并没有触发这个bug。


reference

https://www.elastic.co/guide/en/elasticsearch/reference/8.12/high-cpu-usage.html#high-cpu-usage
聊聊 Elasticsearch 中的任务管理机制
red-yellow-cluster-status
你所不知道的ndJSON:序列化与管道流


附录

elasticsearch,index基本数据格式

{
	"settings": {
		"analysis": {
			"analyzer": {
				"default": {
					"type": "simple"  //整个index使用的analyzer
				},
				"default_search": {
					"type": "whitespace" //默认对这个index的搜索关键字使用的analyzer 也就是分词,tokenizer+去停用词等操作。
				}
			}
		},
		"number_of_shards": 3,// 分片存储,将数据分块,存储在集群中,搜索时,将请求发向对应的分片,类似hadoop(也能增加搜索时的并行性)
		"number_of_replicas": 1 // 副本,即整个集群上,不同机器中存储副本。默认为1,即有一个副本,但是,副本必须存在不同的机器上,单node,多余的副本会无法被alloc,导致node状态为yellow
	},
	"mappings": {
		"properties": {
			"title": {
				"type": "text",
				"analyzer": "ik_smart" //对单个field定义分析器,仅对该field生效。
			},
			"field1": {
				"type": "keyword"
			},
			"field2": {
				"type": "date"
			}
		}
	}
}

elasticsearch的analyzer

analyzer主要做分词,去除停用词等数据预处理的工作。
默认有一个standard,whitespace,simple,等
分别对应不同的分词方法。
但是,都不支持中文分词,所以,只用中文文本数据,一定要使用ik分词的插件,否则分词效果差会非常影响搜索的准确性。
具体安装配置IK分词器的方法详见:
ElasticSearch中文分词

Elasticsearch 的聚合查询功能可以帮助用户对数据进行分组、统计、计算等操作。但是,聚合查询可能会导致 CPU 负载飙升的问题,这是因为聚合查询需要对大量的数据进行计算,而计算量大会消耗大量的 CPU 资源。 以下是一些可能导致聚合查询 CPU 负载飙升的原因以及相应的解决方法: 1. 聚合查询的时间范围过大:如果聚合查询的时间范围过大,需要对大量的数据进行计算,导致 CPU 负载飙升。可以通过缩小时间范围来减少计算量,或者使用 Elasticsearch 的索引分片功能将大索引按时间分片,只对需要的时间段进行查询。 2. 聚合查询的结果集过大:如果聚合查询的结果集过大,需要对大量的数据进行排序和计算,导致 CPU 负载飙升。可以通过限制返回结果的数量或者使用 Elasticsearch 的 Scroll API 进行分批处理来减少计算量。 3. 聚合查询的查询条件过于宽泛:如果聚合查询的查询条件过于宽泛,需要对大量的数据进行计算,导致 CPU 负载飙升。可以通过使用更精确的查询条件来缩小计算范围,或者使用 Elasticsearch 的 Filter 查询来先过滤出符合条件的文档再进行聚合查询。 4. 聚合查询的聚合方式过于复杂:如果聚合查询的聚合方式过于复杂,需要进行大量的计算和排序,导致 CPU 负载飙升。可以通过简化聚合方式,或者将聚合操作拆分成多个步骤分别进行计算,以降低计算量。 希望这些解决方法能够对您有所帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值