题意:
对于一串彩灯,提供四种改变彩灯状态(ON<=>OFF)的操作:a.改变所有彩灯状态;b.改变奇数彩灯状态;c.改变偶数彩灯状态;d.改变3k+1号彩灯状态(1,4,7,10...)。
给定彩灯数目,操作次数,和对于某几个彩灯必须为ON、某几个彩灯必须为OFF的要求,问经过给定次数的操作,最终能达到的满足要求的状态有多少种,输出所有满足要求的彩灯状态。
原题中操作次数是1<=C<=10000的,如果以此为搜索深度,未免比较可怕。还好这里有点小玄机,可以将搜索次数大大限制。
考虑那四个操作,可以发现有这样的特点:
1.操作序列中的各操作是可以交换的,即ab=ba;
2.每两次相同操作效果抵消,即aab=b。
据此处理一个操作序列,首先将所有相同的操作归并到一起,得到aa...ab....bc....cd....d的序列;然后将偶数个相同操作消除,奇数个相同操作剩余一个即可,得到一个小于等于4个操作的操作序列,其中每个操作不多于一次。
所以可以将操作数限制在4以下,4^4=256,一共有256种最终状态,暴搜即可。以4层搜索为例,每层搜索中求解彩灯状态建立在上层搜索的结果状态上,用一个线性数组存储所有层次结果的话,需要建立起下层结果和上层结果在存储位置上的对应方式,由于每次搜索将结果数扩张四倍,所以得到对应关系为i = (j-1)/4。
代码如下: