LeetCode 480滑动窗口中位数(vector+选择排序)

这题我是直接采用选择排序写出来的,写出来去看官方解答,发现官方题解用的数据结构也太多了,实在让人看不下去,所以就记录下我的题解吧,欢迎大家讨论。
首先我们需要一个数据结构来实时存储窗口中的值,并且要能够实时删除值,插入一个值,并且进行排序,然后找到中位数。
这里我采用vector来存储,主要考虑到这个数据结构的大小不会变,只要存储k个元素,采用vector可以直接取下标,所以寻找中位数的时间复杂度是O(1)。
接下来的问题就是要在排序好的数组中找到要删除的元素,这里的时间复杂度是O[k]。
然后我把要插入的元素直接覆盖掉要删除的元素。
接下来是排序,如果每次都采用sort函数进行排序,时间复杂度是O(Klog(k))。由于数组除了删除位置的元素没有在正确的位置外,其余元素都已经有序了,
这里我想到了插入排序,如果当前元素比右边元素大,则向右边做插入排序;如果当前元素比左边元素小,则向左边做插入排序,时间复杂度是O(K)。
最后,返回中位数即可。代码如下。

class Solution {
public:
    vector<int> temp; //用于存放窗口值,此题使用基于选择排序的排序算法
    vector<double> medianSlidingWindow(vector<int>& nums, int k) {
        int n = nums.size();
        temp.resize(k);  //开辟k个元素空间
        vector<double> ans;  //答案数组
        for(int i = 0;i<k;i++){  //先放入k个元素
            temp[i] = nums[i];
        }
        sort(temp.begin(),temp.end());  //排序
        if(k%2==0){  //偶数
            ans.push_back(((double)temp[k/2]+(double)temp[k/2-1])/2.0);
        }else{  //奇数
            ans.push_back(temp[k/2]);
        }
        for(int i = k;i<n;i++){ //每次把窗口向右移动一个位置
            ans.push_back(findMidNUm(nums[i-k],nums[i],k));
        }
        return ans;

    }
    //此函数的功能是首先删除cle,然后插入ins,然后排序,然后返回中位数
    double findMidNUm(int cle,int ins, int k){
        double midNum;  //返回值
        int position;   //cle所在位置下标
        for(int i = k-1;i>=0;i--){
            if(temp[i] == cle){  //找到要删除的值,再执行插入排序
                temp[i] = ins;
                position = i;  //cle所在位置下标
                break;
            }
        }
        if(ins>cle){ //大于要删除的值,向后做插入排序
            int i = position+1;
            while(i<k&&ins>temp[i]){
                temp[i-1] = temp[i];
                i++;
            }
            temp[i-1] = ins;
        }else if(ins<cle){ //小于要删除的值,想前做插入排序
            int i = position - 1;
            while(i>=0&&ins<temp[i]){
                temp[i+1] = temp[i];
                i--;
            }
            temp[i+1] = ins;
        }
        //等于不用排序
        if(k%2==0){  //偶数 
            midNum = ((double)temp[k/2]+(double)temp[k/2-1])/2.0;
        }else{  //奇数
            midNum = temp[k/2];
        }
        return midNum;
    }
};

个人觉得我的代码时间复杂度为O(Nk),与官方题解的时间复杂度(O(Nlog(n)))相比,当k非常大的时候,官方题解的时间复杂度更好,但是空间复杂度,在我的题解下只有O(k),所以空间复杂度是更好的。
综上所述,当k比较小的时候,k约等于logN,这时候似乎采用基于选择排序的解法会更好。
不过,官方题解我没有耐心看下去了…用的数据结构太复杂了…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值