这题我是直接采用选择排序写出来的,写出来去看官方解答,发现官方题解用的数据结构也太多了,实在让人看不下去,所以就记录下我的题解吧,欢迎大家讨论。
首先我们需要一个数据结构来实时存储窗口中的值,并且要能够实时删除值,插入一个值,并且进行排序,然后找到中位数。
这里我采用vector来存储,主要考虑到这个数据结构的大小不会变,只要存储k个元素,采用vector可以直接取下标,所以寻找中位数的时间复杂度是O(1)。
接下来的问题就是要在排序好的数组中找到要删除的元素,这里的时间复杂度是O[k]。
然后我把要插入的元素直接覆盖掉要删除的元素。
接下来是排序,如果每次都采用sort函数进行排序,时间复杂度是O(Klog(k))。由于数组除了删除位置的元素没有在正确的位置外,其余元素都已经有序了,
这里我想到了插入排序,如果当前元素比右边元素大,则向右边做插入排序;如果当前元素比左边元素小,则向左边做插入排序,时间复杂度是O(K)。
最后,返回中位数即可。代码如下。
class Solution {
public:
vector<int> temp; //用于存放窗口值,此题使用基于选择排序的排序算法
vector<double> medianSlidingWindow(vector<int>& nums, int k) {
int n = nums.size();
temp.resize(k); //开辟k个元素空间
vector<double> ans; //答案数组
for(int i = 0;i<k;i++){ //先放入k个元素
temp[i] = nums[i];
}
sort(temp.begin(),temp.end()); //排序
if(k%2==0){ //偶数
ans.push_back(((double)temp[k/2]+(double)temp[k/2-1])/2.0);
}else{ //奇数
ans.push_back(temp[k/2]);
}
for(int i = k;i<n;i++){ //每次把窗口向右移动一个位置
ans.push_back(findMidNUm(nums[i-k],nums[i],k));
}
return ans;
}
//此函数的功能是首先删除cle,然后插入ins,然后排序,然后返回中位数
double findMidNUm(int cle,int ins, int k){
double midNum; //返回值
int position; //cle所在位置下标
for(int i = k-1;i>=0;i--){
if(temp[i] == cle){ //找到要删除的值,再执行插入排序
temp[i] = ins;
position = i; //cle所在位置下标
break;
}
}
if(ins>cle){ //大于要删除的值,向后做插入排序
int i = position+1;
while(i<k&&ins>temp[i]){
temp[i-1] = temp[i];
i++;
}
temp[i-1] = ins;
}else if(ins<cle){ //小于要删除的值,想前做插入排序
int i = position - 1;
while(i>=0&&ins<temp[i]){
temp[i+1] = temp[i];
i--;
}
temp[i+1] = ins;
}
//等于不用排序
if(k%2==0){ //偶数
midNum = ((double)temp[k/2]+(double)temp[k/2-1])/2.0;
}else{ //奇数
midNum = temp[k/2];
}
return midNum;
}
};
个人觉得我的代码时间复杂度为O(Nk),与官方题解的时间复杂度(O(Nlog(n)))相比,当k非常大的时候,官方题解的时间复杂度更好,但是空间复杂度,在我的题解下只有O(k),所以空间复杂度是更好的。
综上所述,当k比较小的时候,k约等于logN,这时候似乎采用基于选择排序的解法会更好。
不过,官方题解我没有耐心看下去了…用的数据结构太复杂了…