第一天给工人1/7的。
第二天给2/7,收回1/7的。
第三天再给1/7的。
第四天给4/7的,收回前两个。
第五六七三天,重复前三天的动作。
OK!
1. 假设只有1条,
有疯狗的村民出去转了一圈,发现一条疯狗也没有,他就可以确定自己的狗是疯狗,(第一天就杀了),第一天没有杀,所以所有村民得出不止一条疯狗的共识。
2.假设2条疯狗,
有疯狗的村民出去转了一圈,发现只有1条疯狗,又因为不止一条疯狗(第一天共识),所以第二天就杀了,第二天没杀,说明应该不少于3条。
3.假设有3条疯狗,
有疯狗的村民出去转了一圈,发现只有2条疯狗,又因为不少于3条(第二天共识),所以就知道自己的狗一定是疯狗,结果就开杀了。
3,烧一根不均匀的绳,从头烧到尾总共需要1个小时。现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢?
答: 不管这根绳子是否均匀,从头烧到尾总共需要1个小时,则两头一起烧,必然用半小时烧完, 因此可取a绳从两头烧,同时b绳从一头烧,当a绳烧尽时,灭掉b绳(此时得到半个小时) 然后c绳开始烧并开始计时,在c绳烧尽时(得到一个小时),b绳从两头烧(得到15分钟),结束时即为1小时15分钟。
4,你有一桶果冻,其中有黄色、绿色、红色三种,闭上眼睛抓取同种颜色的两个。抓取多少个就可以确定你肯定有两个同一颜色的果冻?(5秒-1分钟)
答: 运气好的话,抓2个就可以了.运气不好的话,最多只需抓4个(抽屉原理)
5,如果你有无穷多的水,一个3公升的提捅,一个5公升的提捅,两只提捅形状上下都不均匀,问你如何才能准确称出4公升的水?(40秒-3分钟)
答: 有两种做法,基本思路都是总是往一个桶里装水,然后往另外一个桶里倒水.不过结果都是5公升的桶里能得到4公升的水
做法一: 用5公升的提桶装水,倒入3公升的提桶,把3提桶的水倒尽,再把5公升提桶剩下的2升水倒入3公升提桶(此时3公升提桶仅能再装1公升水),然后装满5公升的提桶,往3公升提桶倒水,当把3公升提桶倒满水时,5公升的提桶剩下的就是4公升了
做法二: 用3公升的提桶装水,倒入5公升的提桶,再把3公升提桶装满水倒入5公升,这时3公升桶还剩一公升,再把5公升提桶的水全部倒掉,然后把3公升桶剩的水倒入5公斤桶,然后装满3公升的提桶,往5公升提桶装3公升,这时5公斤桶里的就是4公升了
6,一个岔路口分别通向诚实国和说谎国。来了两个人,已知一个是诚实国的,另一个是说谎国的。诚实国永远说实话,说谎国永远说谎话。现在你要去说谎国,但不知道应该走哪条路,需要问这两个人。请问应该怎么问?(20秒-2分钟)
答: 只需要随便问一个人"你的国家怎么走?" 不管这个人是诚实国的还是说谎国的,他们所指的路一定是通往诚实国的,那么另外一条路就是通往说谎国的了.
7,12个球一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球。13个呢?(注意此题并未说明那个球的重量是轻是重,所以需要仔细考虑)(5分钟-1小时)
答: 如果知道坏球是比标准球更重还是更轻,那么这就是一个简单题了,不妨设坏球比标准球轻,那么先是分2组,6个一组. 一称之后,把轻的那6个分2组,则是3个一组. 最后,这3个随便2个称,如果平衡,则没称的是最轻的.如果有一个轻,则那个就是了
可是,在不知道坏球的重量是轻是重的情况下. 解决办法只有充分利用排除法 这是其中的一种思路,至于13个球怎么做,我还没想法呢.
起始:把12个球编号:1,2,3,4,5,6,7,8,9,10,11,12,重量不同的球我们称为坏球,其他称为标准球
第一次称 第二次称 第三次称 结果:坏球
左(1,2,3,4)
| A |-左=右---->(9,10)vs(1,2)------ | | | | | | | | | | | C |-左<右->(1,2,5,6)vs(3,9,10,11) | | | | | | | | | | | | | | | J |-左>右->(1,2,5,6)vs(3,9,10,11) | B |-相等->(11)vs(1)---- | | | |-不等->-(9)vs(1)---- D |-相等->(4,7)vs(9,10) | | | | H |-小于->( 1 )vs( 9 )- | | | | I |-大于->(3,5)vs(9,10) |-相等->(4,7)vs(9,10) | | | | |-大于->( 1 )vs( 9 )- | | | | |-小于->(3,5)vs(9,10) | |-相等------12 | |-不等------11 |-相等------10 | |-不等------ 9 E |-相等------ 8 | F |-小于------ 4 | G |-大于------ 7 |-相等------ 2 | |-不等------ 1 |-相等------ 6 | |-小于------ 3 | |-大于------ 5 |-相等------ 8 | |-小于------ 7 | |-大于------ 4 |-相等------ 2 | |-不等------ 1 |-相等------ 6 | |-小于------ 5 | |-大于------ 3 |
8,在一天的24小时之中,时钟的时针、分针和秒针完全重合在一起的时候有几次?都分别是什么时间?你怎样算出来的?
答: 确切的说,它们永远不可能完全重合,故为0次.
模糊的说,它们可以重合22次,分别是0:00有一次,1:05之后有一次,2:10之后有一次,3:15之后有一次,4:20之后有一次,5:25之后有一次,6:30之后有一次,7:35之后有一次,8:40之后有一次,9:45之后有一次,10:50之后有一次,12:00接着重复一样的过程
当然 网上也有人认为是2次,就是除了0:00和12:00完全重合外,其他都不可能完全重合