数据结构(时间复杂度)

说明

时间复杂度分为:

        常数阶O(1)>对数阶O(logN)>线性阶O(N)>线性对数阶O(NlogN)>平方阶O(N^2)>乘阶O(N!)>指数阶O(2^N)

复杂多就是套用最深的语句,所执行的次数表示。复杂度越高的算法,执行的次数就越多,所需要的时间就会越多

在开发过程中,编写程序时关注时间复杂度和空间复杂度两个维度,业务逻辑不变的情况下减少时间复杂度,可以提升执行的性能

举例

常数阶
int algorithm(int N) {
    int count = 0;
    int a = 10000;
    for (int i = 0; i < a; i++) {
        count++;                            10000次=O(10000)    =O(1)
    }
    return count;
}
对数阶
int algorithm(int N) {
    int count = 0;
    float i = N;
    while (i > 1) {
        i = i / 2;
        count++;                        n/2    =O(logN)
    }
    return count;
}
线性阶
int algorithm(int N) {
    int count = 0;
    for (int i = 0; i < N; i++)
        count++;                        n    = O(N)
    return count;
}
线性对数阶
int algorithm(int N) {
    int count = 0;
    float i = N;
    while (i > 1) {
        i = i / 2;                            n/2
        for (int j = 0; j < N; j++)
            count++;                        n/2 * n    =O(logN)*O(N)=O(NlogN)
    }
    return count;
}
平方阶
int algorithm(int N) {
    int count = 0;
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {    n
            count++;                    n * n    =O(N)*O(N)=O(N^2)
        }
    }
    return count;
}
乘阶
int algorithm(int N) {
    if (N <= 0) return 1;
    int count = 0;
    for (int i = 0; i < N; i++) {
        count += algorithm(N - 1);        n * n-1 * n-2...=O(N!)
    }
    return count;
}

指数阶
int algorithm(int N) {
    if (N <= 0) return 1;
    int count_1 = algorithm(N - 1);        
    int count_2 = algorithm(N - 1);        
    return count_1 + count_2;                2^0    2^1    .....2^n    =O(2^N)
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值