二叉搜索树

搜索树数据结构支持许多动态集合操作,包括SEARCH、MINIMUM、MAXIMUM、PREDECESSOR、SUCCESSOR、INSERT和DELETE等。因此,我们使用一棵搜索树既可以作为一个字典又可以作为一个优先队列。

//二叉排序树

#include <iostream>
#include <stdlib.h>

using namespace std;

typedef int KeyType;
typedef struct _BSTNODE_
{
   KeyType key;
   _BSTNODE_ * lChild;
   _BSTNODE_ * rChild;
}BstNode;

typedef BstNode * BSTree;

void insertBST(BSTree *T, KeyType key)
{
    BstNode *f, *p = *T;
    //指针类型做形参的时候,也会从内存中拷贝一份该形参的值,但不是一个地址,虽然在这里插入了树节点,但插入的位置
    //不是我们想要的位置,所以在遍历的时候会发现树为空,所以这里是BSTree *T,而不是BSTree T
    cout<<"插入函数中T的地址:"<<T<<endl;
    while(p)
    {
        if(p->key == key)
        {
            return ;//树种存在该值,直接返回
        }
        else
        {
            f = p;
            p = (p->key > key) ? p->lChild : p->rChild;//如果当前输入的值小于节点值,就给p赋值为左孩子地址
        }
    }
    //到此为止已经确定要插入的节点位置了,目前确定的是父节点,他的左右孩子都为空,下面插入的时候还要判断
    //创建新节点
    p = (BstNode *)malloc(sizeof(BstNode));
    p->key = key;
    p->lChild = p->rChild = NULL; //创建完毕

    //判断根节点是否为空
    if(*T == NULL)
    {
        *T = p;//就把当前插入的当作根节点
    }
    else
    {
        if(f->key > key)
        {
            f->lChild = p;
        }
        else
        {
            f->rChild = p;
        }
    }
}


BSTree CreateBST()
{
    BSTree T = NULL;
    cout<<"T的地址:"<<&T<<endl;
    KeyType key;
    cin>>key;
    while(key)
    {
        insertBST(&T,key);
        cin>>key;
    }

    return T;
}

void midList(BSTree T)//中序遍历
{
    if(T != NULL)
    {
        midList(T->lChild);
        cout<<T->key<<" ";
        midList(T->rChild);
    }
}
int main()
{
    BSTree T = NULL;
    T = CreateBST();
    midList(T);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值