UVa 12627 Erratic Expansion 分治法

13 篇文章 0 订阅

题目链接:https://cn.vjudge.net/problem/UVA-12627

一开始只能想到O(n*k)的算法,就是傻傻的一行一行的算,结果可想而知,TLE了。

看了紫书看到了O(k)的算法,觉得很值得借鉴,以后肯定有不少地方能用到,就记录一下。
具体思路就是我们只须统计前 i 行的红球数量即可,我们用 f(k, i) 表示k小时后,前 i 行的红球数量,这样一来我们的答案就是 f(k, B) - f(k,A-1) 。

现在就是求 f(k, i) 的递归式子了,我们分类讨论:
当 i >= 2^(k-1) 的时候,f(k, i) = f(k-1, i-2^(k-1)) + 2*c(k-1);
当 i < 2^(k-1) 的时候,f(k, i) = 2*f(k-1, i);
其中 c(k) 表示k小时后,红球的总数。通过观察易知 c(k) = 3^k;
递归终止条件就是,当 i == 0 时,直接返回 0; 当 k == 0 时,直接返回 1 即可;

(注:紫书上的g(k, i)的递归式子有点小问题,可能是印刷错误)

代码:

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;

LL c(int k){
    return k == 0 ? 1 : c(k-1)*3;
}

LL f(int k, int h){
    //这里必须先判断h是否为0,再判断k是否为0,其中的道理显而易见。
    if(h == 0) return 0;
    if(k == 0) return 1;

    LL p = (1<<(k-1));
    if(h >= p) return f(k-1, h-p) + 2*c(k-1);
    else return 2*f(k-1, h);
}

int main(){
    int T, ca = 1;
    scanf("%d", &T);
    while(T--){
        int k, A, B;
        scanf("%d %d %d", &k, &A, &B);
        printf("Case %d: %lld\n", ca++, f(k, B)-f(k, A-1));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值