题目链接:https://cn.vjudge.net/problem/UVA-12627
一开始只能想到O(n*k)的算法,就是傻傻的一行一行的算,结果可想而知,TLE了。
看了紫书看到了O(k)的算法,觉得很值得借鉴,以后肯定有不少地方能用到,就记录一下。
具体思路就是我们只须统计前 i 行的红球数量即可,我们用 f(k, i) 表示k小时后,前 i 行的红球数量,这样一来我们的答案就是 f(k, B) - f(k,A-1) 。
现在就是求 f(k, i) 的递归式子了,我们分类讨论:
当 i >= 2^(k-1) 的时候,f(k, i) = f(k-1, i-2^(k-1)) + 2*c(k-1);
当 i < 2^(k-1) 的时候,f(k, i) = 2*f(k-1, i);
其中 c(k) 表示k小时后,红球的总数。通过观察易知 c(k) = 3^k;
递归终止条件就是,当 i == 0 时,直接返回 0; 当 k == 0 时,直接返回 1 即可;
(注:紫书上的g(k, i)的递归式子有点小问题,可能是印刷错误)
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL c(int k){
return k == 0 ? 1 : c(k-1)*3;
}
LL f(int k, int h){
//这里必须先判断h是否为0,再判断k是否为0,其中的道理显而易见。
if(h == 0) return 0;
if(k == 0) return 1;
LL p = (1<<(k-1));
if(h >= p) return f(k-1, h-p) + 2*c(k-1);
else return 2*f(k-1, h);
}
int main(){
int T, ca = 1;
scanf("%d", &T);
while(T--){
int k, A, B;
scanf("%d %d %d", &k, &A, &B);
printf("Case %d: %lld\n", ca++, f(k, B)-f(k, A-1));
}
return 0;
}