1. Spark Streaming运行原理与核心概念
Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的、具备容错机制的实时流数据的处理
支持从多种数据源获取数据,包括Kafk、Flume、Twitter、ZeroMQ、Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map、reduce、join和window等高级函数进行复杂算法的处理。最后还可以将处理结果存储到文件系统,数据库和现场仪表盘
在 “One Stack rule them all” 的基础上,还可以使用Spark的其他子框架,如集群学习、图计算等,对流数据进行处理
1.1 Spark Streaming运行原理
spark程序是使用一个spark应用实例一次性对一批历史数据进行处理,spark streaming是将持续不断输入的数据流转换成多个batch分片,使用一批spark应用实例进行处理
1.2 Spark Streaming处理的数据流图
简单描述
Spark Streaming不断的从数据源获取数据(连续的数据流),并将这些数据按照周期划分为batch