Spark Streaming 总结整理(一):Spark Streaming运行原理与核心概念

1. Spark Streaming运行原理与核心概念

Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的、具备容错机制的实时流数据的处理

支持从多种数据源获取数据,包括Kafk、Flume、Twitter、ZeroMQ、Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map、reduce、join和window等高级函数进行复杂算法的处理。最后还可以将处理结果存储到文件系统,数据库和现场仪表盘

在 “One Stack rule them all” 的基础上,还可以使用Spark的其他子框架,如集群学习、图计算等,对流数据进行处理

1.1 Spark Streaming运行原理

spark程序是使用一个spark应用实例一次性对一批历史数据进行处理,spark streaming是将持续不断输入的数据流转换成多个batch分片,使用一批spark应用实例进行处理
在这里插入图片描述

1.2 Spark Streaming处理的数据流图

在这里插入图片描述
简单描述

Spark Streaming不断的从数据源获取数据(连续的数据流),并将这些数据按照周期划分为batch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>