Kmeans算法

Kmeans算法

是最简单的聚类算法之一,算法接受参数 k ;然后将事先输入的n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。

K-means算法是最为经典的基于划分的聚类方法,是十大经典 数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。
假设要把样本集分为c个类别,算法描述如下:
(1)适当选择c个类的初始中心;
(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类;
(3)利用均值等方法更新该类的中心值;
(4)对于所有的c个 聚类中心,如果利用(2)(3)的 迭代法更新后,值保持不变,则迭代结束,否则继续迭代。
该算法的最大优势在于简洁和快速。算法的关键在于初始中心的选择和距离公式。

kmeans的计算方法如下:

(1 随机选取k个中心点   2 遍历所有数据,将每个数据划分到最近的中心点中  3 计算每个聚类的平均值,并作为新的中心点

  4 重复2-3,直到这k个中线点不再变化(收敛了),或执行了足够多的迭代)

时间复杂度:O(I*n*k*m)      空间复杂度:O(n*m)

其中m为每个元素字段个数,n为数据量,I为跌打个数。一般I,k,m均可认为是常量,所以时间和空间复杂度可以简化为O(n),即线性的。

算法流程

首先从n个数据对象任意选择 k 个对象作为初始 聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的 均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数.k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。

具体流程

输入:k, data[n];
(1)选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1];
(2) 对于data[0]….data[n],分别与c[0]…c[k-1]比较,假定与c[i]差值最少,就标记为i;
(3) 对于所有标记为i点,重新计算c[i]={所有标记为i的data[j]之和}/标记为i的个数;
(4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值。

算法收敛

从kmeans的算法可以发现,SSE其实是一个严格的坐标下降(Coordinate Decendet)过程。设目标函数SSE如下:

SSE(clip_image002,clip_image004,…,clip_image006) = clip_image008

采用欧式距离作为变量之间的聚类函数。每次朝一个变量clip_image010的方向找到最优解,也就是求偏倒数,然后等于0,可得

c_i=clip_image012 其中m是c_i所在的簇的元素的个数

也就是当前聚类的均值就是当前方向的最优解(最小值),这与kmeans的每一次迭代过程一样。所以,这样保证SSE每一次迭代时,都会减小,最终使SSE收敛。

由于SSE是一个非凸函数(non-convex function),所以SSE不能保证找到全局最优解,只能确保局部最优解。但是可以重复执行几次kmeans,选取SSE最小的一次作为最终的聚类结果。

 

0-1规格化

由于数据之间量纲的不相同,不方便比较。举个例子,比如游戏用户的在线时长和活跃天数,前者单位是秒,数值一般都是几千,而后者单位是天,数值一般在个位或十位,如果用这两个变量来表征用户的活跃情况,显然活跃天数的作用基本上可以忽略。所以,需要将数据统一放到0~1的范围,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。具体计算方法如下:

clip_image014

其中clip_image016属于A。

轮廓系数

轮廓系数(Silhouette Coefficient)结合了聚类的凝聚度(Cohesion)和分离度(Separation),用于评估聚类的效果。该值处于-1~1之间,值越大,表示聚类效果越好。具体计算方法如下:

  1. 对于第i个元素x_i,计算x_i与其同一个簇内的所有其他元素距离的平均值,记作a_i,用于量化簇内的凝聚度。
  2. 选取x_i外的一个簇b,计算x_i与b中所有点的平均距离,遍历所有其他簇,找到最近的这个平均距离,记作b_i,用于量化簇之间分离度。
  3. 对于元素x_i,轮廓系数s_i = (b_i – a_i)/max(a_i,b_i)
  4. 计算所有x的轮廓系数,求出平均值即为当前聚类的整体轮廓系数

从上面的公式,不难发现若s_i小于0,说明x_i与其簇内元素的平均距离小于最近的其他簇,表示聚类效果不好。如果a_i趋于0,或者b_i足够大,那么s_i趋近与1,说明聚类效果比较好。

 

K值选取

在实际应用中,由于Kmean一般作为数据预处理,或者用于辅助分类贴标签。所以k一般不会设置很大。可以通过枚举,令k从2到一个固定值如10,在每个k值上重复运行数次kmeans(避免局部最优解),并计算当前k的平均轮廓系数,最后选取轮廓系数最大的值对应的k作为最终的集群数目。

 

实际应用

下面通过例子(R实现,完整代码见附件)讲解kmeans使用方法,会将上面提到的内容全部串起来

1
2
3
library(fpc) # install.packages("fpc")
data(iris)
head(iris)

加载实验数据iris,这个数据在机器学习领域使用比较频繁,主要是通过画的几个部分的大小,对花的品种分类,实验中需要使用fpc库估计轮廓系数,如果没有可以通过install.packages安装。

1
2
3
4
5
6
7
8
9
# 0-1 正规化数据
min.max.norm <- function (x){
     (x-min(x))/(max(x)-min(x))
}
raw.data <- iris[,1:4]
norm.data <- data.frame(sl = min.max.norm(raw.data[,1]),
                                         sw = min.max.norm(raw.data[,2]),
                                         pl = min.max.norm(raw.data[,3]),
                                         pw = min.max.norm(raw.data[,4]))

对iris的4个feature做数据正规化,每个feature均是花的某个不为的尺寸。

1
2
3
4
5
6
7
8
9
10
11
12
13
# k取2到8,评估K
K <- 2:8
round <- 30 # 每次迭代30次,避免局部最优
rst <- sapply(K, function (i){
     print(paste( "K=" ,i))
     mean(sapply(1:round, function (r){
         print(paste( "Round" ,r))
         result <- kmeans(norm.data, i)
         stats <- cluster.stats(dist(norm.data), result$cluster)
         stats$avg.silwidth
     }))
})
plot(K,rst,type= 'l' ,main= '轮廓系数与K的关系' , ylab= '轮廓系数' )

评估k,由于一般K不会太大,太大了也不易于理解,所以遍历K为2到8。由于kmeans具有一定随机性,并不是每次都收敛到全局最小,所以针对每一个k值,重复执行30次,取并计算轮廓系数,最终取平均作为最终评价标准,可以看到如下的示意图,

 

image

 

当k取2时,有最大的轮廓系数,虽然实际上有3个种类。

1
2
3
4
5
6
7
8
# 降纬度观察
old.par <- par(mfrow = c(1,2))
k = 2 # 根据上面的评估 k=2最优
clu <- kmeans(norm.data,k)
mds = cmdscale(dist(norm.data,method= "euclidean" ))
plot(mds, col=clu$cluster, main= 'kmeans聚类 k=2' , pch = 19)
plot(mds, col=iris$Species, main= '原始聚类' , pch = 19)
par(old.par)

聚类完成后,有源原始数据是4纬,无法可视化,所以通过多维定标(Multidimensional scaling)将纬度将至2为,查看聚类效果,如下

 

image

可以发现原始分类中和聚类中左边那一簇的效果还是拟合的很好的,右测原始数据就连在一起,kmeans无法很好的区分,需要寻求其他方法。

 

kmeans最佳实践

1. 随机选取训练数据中的k个点作为起始点

2. 当k值选定后,随机计算n次,取得到最小开销函数值的k作为最终聚类结果,避免随机引起的局部最优解

3. 手肘法选取k值:绘制出k--开销函数闪点图,看到有明显拐点(如下)的地方,设为k值,可以结合轮廓系数。

4. k值有时候需要根据应用场景选取,而不能完全的依据评估参数选取。

clip_image002

 

 

参考

[1] kmeans 讲义by Andrew NG

[2] 坐标下降法(Coordinate Decendent)

[3] 数据规格化

[4] 维基百科--轮廓系数

[5] kmeans算法介绍

[6] 降为方法—多维定标

[7] Week 8 in Machine Learning, by Andrew NG, Coursera

 

转自:https://www.cnblogs.com/bourneli/p/3645049.html

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值