maskrcnn 虚拟环境的配置
conda create -n maskrcnn python=3.5
source activate maskrcnn
conda install cudatoolkit=10.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/
conda install cudnn=7.6.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/
conda install tensorflow-gpu=1.14.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/
conda install keras-gpu=2.1.2 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/
cd 指定文件夹
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt
发现用conda安装时不能保证我需要的版本。直接pip安装就行。
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-gpu==1.14.0
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple keras==2.1.2
[补充]经实验发现:
cuda 和cudnn保证与gpu匹配就行。
tensorflow-gpu版本与cudnn匹配就行
keras 与tensorflow-gpu匹配就行。
conda install tensorflow-gpu=1.4.1 cudatoolkit=8.0 cudnn=6.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/