超图高性能分布式渲染技术解密与应用

超图通过引入大数据分布式技术,打造高性能分布式地图渲染方案,实现亿级空间数据的免切片发布服务,支持秒级响应、即时更新与高效浏览。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

地图服务发布是GIS应用系统的基本能力和要求,也是数据成果共享的重要方式。对地图服务提供者而言,关注重点一直是如何提供更高效、更优体验的地图服务。

起初,地图服务发布一般采用动态出图的方式,但随着地图数据量的增加,在服务端动态出图需要花费的时间越来越长,超过可以在线等待的极限。于是,GIS产商通过预先生成地图的栅格瓦片来有效提升访问地图服务效率。

然而,随着数据量的进一步飙升、需要查看的地图比例尺的进一步提升,大比例尺地图的栅格瓦片生成耗费的时间也越来越长。并且,若地图数据发生变化或者地图风格调整时,都需要重新生成栅格瓦片,更新非常不方便。

为了更好的解决对空间数据越来越高的即时更新、即时发布、高效浏览的要求,超图通过引入大数据分布式技术,有效的整合了包括分布式存储、矢量金字塔、分布式渲染、自动缓存等一套高新技术,打造出高性能分布式地图渲染技术方案,实现基于HBase的超大规模数据的地图免切片发布服务,可以实现亿级空间数据:1)从拿到原始数据到完成数据入库仅需要数小时;2)无需预先缓存,数据入库即发布;3)地图动态秒级响应。下文将带您解密其中的关键技术。

高性能分布式渲染的关键技术

分布式存储技术

分布式存储技术可以有效解决传统关系型数据库在超大规模数据管理方面的局限性。首先,关系型数据库很难应对单表亿级以上记录的查询和分析,而随着用户并发持续递增,硬盘读写也会成为一个瓶颈,特别是在扩展性和高可用性方面能力也比较弱,成本又相对较高。基于以上分析,关系型数据库已经很难满足大体量数据的存储需求。分布式数据库的分布式技术架构可以很好的解决上述问题。它可以实现横向扩展,通过集群的分布式处理方式对大数据量进行如水平拆分(将数据均匀分布到多个数据库节点中)的操作,这样相比较每个数据库节点的数据量会变小,相关的存储管理性能也自然提升。此外,主流的分布式数据库的分布式能力对用户透明,而且无缝顺应用户的SQL操作习惯,让用户在使用和管理上更加地简单便捷。

经过选型,超图选择了HBase分布式数据库,HBase构建在HDFS之上,是一个开源的、分布式的、版本化的非关系型数据库。它的核心存储模型是基于Google的BigTable构建,目标是在廉价、可扩展的硬件设备之上,托管可以达到数十亿行和百万列级别的表对象。它具有模块化的设计,支持水平扩展和自动表分片,并且支持不同区域服务器之间的自动故障转移。

所搭建的HBase集群可以注册到SuperMap iServer中,然后,使用iServer的“创建拷贝数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值