1.颜色特征
量化颜色直方图:
统计落在量化单元上的像素数量
HSV空间
优势:计算高校,劣势:量化问题,稀疏
聚类颜色直方图:
使用聚类算法对所有像素点颜色向量进行聚类,bin由聚类中心代表
2.几何特征
边缘:
像素明显变化的区域(一阶导数的极值区域)
边缘提取:
先高斯去噪,再使用一阶导数求极值
3.基于关键点的特征描述子
不同距离,方向,角度观察同一物体时,我们仍然可以认为他是同一物品。理想的特征描述子应该具备这个性质,同一特征点应具有足够相似的描述子,称之为描述点的可复现性。
特征点:
可重复的,显著的,抗图片变化的
Harris角点:
一种显著点,在任何方向移动小窗口,导致大的像素变动
角点:两个特征值都大
平面:两个特征值都小
直线:一个特征值大一个特征值小
Fast角点:
如果有个像素点和周围的像素点都不同,那么他就是Fast角点
斑点:
二阶导数的极值被称之为斑点,需要通过高斯滤波预处理再进行二阶求导
4.其他特征提取
局部特征SIFT:
基于尺度空间不变的特征
优点:具有良好的不变性,独特性好,信息量丰富,多量性
计算步骤:
在DoG尺度空间中获得极值点(关键点)(DoG的计算量比LoG小很多,故用DoG代替LoG)
对关键点处理(位置插值,去除边缘点)
关键点的方向估计(便于找到旋转过后的特征描述)
关键点描述子的生成
缺点:计算过度复杂
Haar-like特征:
边缘特征,线性特征,中心特征,对角线特征组成特征模板,特征模板内有白色和黑色两种矩形,并定义还模板的特征值为白色矩形像素和减去黑色矩形像素和。Haar特征值反映了灰度值变化情况
局部特征SURF:
主要是对SIFT中的某些运算做了简化
与SIFT比较:
近似SIFT算法,实现快速版
亮度变化下效果好
模糊方面优于SIFT
尺度不变上不及SIFT
旋转不变上差很多
ORB特征描述:
基于FAST角点的特征检测与BRIEF特征描述技术,速度比SIFT和SURF更快
给FAST增加尺度不变性,给BRIEF增加旋转不变性
LBP(局部二值模式):
将每个像素点与周围点大小比较
多个BIT组成一个数,统计每个数的直方图
优点:灰度不变性