7-35 城市间紧急救援 (25分) (最短路)

本文介绍了一种基于Dijkstra算法解决城市间最短路径及最大救援队集结问题的方法。通过单源最短路径算法确定从指定起点到终点的最短路径数量及途中可集结的最大救援队数量,并输出具体路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7-35 城市间紧急救援 (25分)

作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图。在地图上显示有多个分散的城市和一些连接城市的快速道路。每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上。当其他城市有紧急求助电话给你的时候,你的任务是带领你的救援队尽快赶往事发地,同时,一路上召集尽可能多的救援队。
输入格式:
输入第一行给出4个正整数N、M、S、D,其中N(2≤N≤500)是城市的个数,顺便假设城市的编号为0 ~ (N−1);M是快速道路的条数;S是出发地的城市编号;D是目的地的城市编号。
第二行给出N个正整数,其中第i个数是第i个城市的救援队的数目,数字间以空格分隔。随后的M行中,每行给出一条快速道路的信息,分别是:城市1、城市2、快速道路的长度,中间用空格分开,数字均为整数且不超过500。输入保证救援可行且最优解唯一。
输出格式:
第一行输出最短路径的条数和能够召集的最多的救援队数量。第二行输出从S到D的路径中经过的城市编号。数字间以空格分隔,输出结尾不能有多余空格。
输入样例:

4 5 0 3
20 30 40 10
0 1 1
1 3 2
0 3 3
0 2 2
2 3 2

输出样例:

2 60
0 1 3

Dir:题目要求是给你起点城市和终点城市还有每个城市救援队的数量,问从起点到终点最短路径的条数和救援最大的数量,最后打印路径。所以单源最短路dijstra。

#include<iostream>
#include<cstring>
#include<stack>
using namespace std; 

#define N 510
#define inf 10000000

struct Gnode{
 int mp[N][N];   
 int price[N];
}g;

int dist[N],vist[N], path[N],p[N],vistM[N];
//dist存起点到其他城市的最短路径,vist存储有无访问
//path表示起点到终点的路径, p表示每个城市救援队的数量 
// vistM表示从起点到终点距离相等的最短路径条数 

void Init(int n);  //初始化 
void Dijstra(int s,int n); //单源最短路 
int findMin(int n); //寻找从城市 V到下一个距离最短的城市,若找不到则说明,所有城市都已经走过
//相应的起点到每个城市的最短路径都已经得到 

int main()
{
 int n,m,sta,end;
 cin>>n>>m>>sta>>end; 
 Init(n);
 for(int i=0;i<n;i++){
  cin>>g.price[i];
 }
for(int i=0;i<m;i++){
  int x,y,weight;
  cin>>x>>y>>weight;
  g.mp[x][y]=g.mp[y][x]=weight;  //无向边 
 } 
 Dijstra(sta,n);
 cout<<vistM[end]<<" "<<p[end]<<endl; 
 stack<int >s;   
 while(end!=-1){   //把路径压到栈里,然后再正向输出 
  s.push(end);
  end=path[end];
 }
 int flag=0;  //控制空格的输出 
 while(!s.empty()){
  if(flag){
   cout<<" ";
   flag=0;
  }
  cout<<s.top();
  flag=1;
  s.pop();
 }
 return 0;
}

void Init(int n){
 for(int i=0;i<n;i++){
  dist[i]=inf;   //初始化每个城市的距离都是无限大,表示起点到第i个城市还没有路 
  vist[i]=0;   //初始化每个城市都未访问 
  path[i]=-1;  //因为路径有0,所以为了方便区别,初始未-1 
  for(int j=0;j<n;j++){
   g.mp[i][j]=g.mp[j][i]=inf;
  }
 }
}

int findMin(int n){ //寻找还未走过的城市中路径最短的,若找不到返回-1 
 int min=inf;   
 int index=-1;
 for(int i=0;i<n;i++){
  if(!vist[i]&&dist[i]<min){
   min=dist[i];
   index=i;
  }
 }
 return index;
}

void Dijstra(int s,int n){  
 dist[s]=0;   //起点的距离为0 
 p[s]=g.price[s]; // 起点救援队的数量 
 vistM[s] =1; //到起点本身的路径为1 
while(1){
  int v=findMin(n);  //遍历找到距离起点s最近的城市 
  if(v==-1){  //若返回-1最说明所有城市都已经走过,并且都是最短的路径,算法结束 
   return;
  }
  vist[v]=1;  //标记当前城市已经访问 
  for(int i=0;i<n;i++){
   if(!vist[i]&&g.mp[v][i]!=inf){  //若第i个城市没有访问,且第i个城市跟v有边连通
   //就看看是否可以找到更短的路径 
    if(dist[i]>dist[v]+g.mp[v][i]){ //若找到更短的路径就更新dist 
     dist[i]=dist[v]+g.mp[v][i];
     p[i]=p[v]+g.price[i]; //同时更新救援队的数量 
     path[i]=v; //记录路径 
     vistM[i]=vistM[v]; //既然更新了路径,那就说明能到v的边都能到i 
    }
    else if(dist[i]==dist[v]+g.mp[v][i]){//若城市v到城市i的最短距离与之前已经的路径
    //相同,则更新到城市i的路径条数,再判断是否城市v到i的救援队数量更多,是的话更新救援队数量 
     vistM[i]=vistM[i]+vistM[v];  //更新到城市i的路径条数 
     if(p[i]<p[v]+g.price[i]){  
      p[i]=p[v]+g.price[i];
      path[i]=v;
     }
    }  
   }
  }
 }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值