一句话区别不同排序

选择:从未排序数据中找到应当放在第I位置的数据,放入第I位置(通过交换二者)。
插入:从未排序数据中第一个,插入到已排序数据
快排:区间中取一个标准,随后每个元素大于的放右游标处(然后游标左移),小于的放左游标处(然后游标右移);随后分别对左~左游标,右游标-右,进行递归调用。
归并:非原地归并需要O(N)空间,原地归并时间复杂度O((logN)²N )
希尔:将数组,元素下标除以delta按余数分组,每组插入排序,之后delta/=2直至1。delta从N/2开始。
堆:构造堆,并将最大元素弹出放到堆(未排序区域)末尾,同时堆大小(未排序长度)-1。
双调:……

bilibili幻の上帝
G++的排序是libstdc++实现的,也可以给Clang++用。
std::sort在libstdc++里是经典的内观排序最后插入排序以避免单一快速排序的退化。
std::stable在libstdc++里的实现会根据是否能成功分配临时缓存选择不同空间复杂度的混合排序(小块插入+带缓存归并/原地归并)。

### 回答1: 你可以使用 BERT 模型预测一句话中最可能出现的关键字。首先,你需要准备好训练好的 BERT 模型和输入数据,然后使用如下步骤进行搜索: 1. 将输入数据转换成 BERT 能够处理的格式,例如将文本转换成 BERT 输入所需的 ID 序列。 2. 使用 BERT 模型对输入数据进行编码,得到输入句子的表示向量。 3. 使用表示向量作为输入,调用搜索引擎的 API,获取搜索结果。 4. 对搜索结果进行处理,提取出关键字。 这是一个大致的流程,具体实现过程可能会有所不同。希望这对你有帮助。 ### 回答2: 使用BERT搜索一句话的关键字有以下几个步骤: 1. 数据预处理:将待搜索的句子进行分词,并添加特殊的标记符号,如[CLS]和[SEP]。同时,将句子转化为数字序列,以便输入BERT模型。 2. 输入编码:将预处理后的句子输入BERT模型,得到句子中每个词的词向量表示。 3. 关键字提取:通过计算句子中每个词的向量表示与一个预训练好的关键字向量之间的相似度,来确定关键字。 4. 相似度计算:常用的相似度计算方法包括余弦相似度和欧式距离。可以选择一个适合自己任务的相似度计算方法。 5. 关键字排序:根据相似度的大小,对关键字进行排序,得到搜索结果。也可以设置一个阈值,只保留相似度高于阈值的关键字。 以上是使用BERT搜索一句话关键字的基本步骤。值得注意的是,BERT模型需要大量的计算资源和较长的训练时间,在使用之前需要先进行预训练,并在特定任务上进行微调。此外,还可以结合其他算法和技术进行优化,以提升搜索的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值