好记忆不如烂笔头,能记下点东西,就记下点,有时间拿出来看看,也会发觉不一样的感受.
目录
一、起源与发展历程
(一)MySQL
-
起源与由来 :MySQL 最初是由瑞典的 MySQL AB 公司开发。其名字来源于开发者 Michael Widenius 的女儿 “My” 和 “SQL”(Structured Query Language,结构化查询语言)的组合。MySQL 最早的版本发布于 1995 年,它最初的设计目标是为满足小型企业和互联网企业对快速、高效数据库的需求,尤其是在 Web 应用开发中,与 PHP 等编程语言紧密结合,迅速在互联网行业得到广泛应用。
-
发展进程 :2008 年,Sun Microsystems 收购了 MySQL AB 公司。2010 年,甲骨文公司收购 Sun Microsystems,MySQL 由此成为甲骨文旗下的产品。在随后的发展过程中,MySQL 不断进行版本更新,优化性能、增加功能,如对 JSON 数据类型的支持、改进查询优化器等,持续扩大其应用范围和市场份额,成为全球最流行的开源关系型数据库之一。
(二)PostgreSQL
-
起源与由来 :PostgreSQL 源于加州大学伯克利分校计算机系开发的 POSTGRES,POSTGRES 是一个关系型数据库研究项目,发布于 1986 年。1994 年,PostgreSQL 正式诞生,它是对 POSTGRES 的改进,将 SQL 查询语言引入其中,将名字改为 PostgreSQL,目标是打造一个功能强大、可扩展且具有高级特性的开源数据库系统,主要用于学术研究和复杂的商业应用场景。
-
发展进程 :PostgreSQL 由全球各地的开源社区开发者进行维护和开发。多年来,其版本不断更新,不断增加新特性,如对地理空间数据的支持、对复杂数据类型的扩展等,逐渐在金融、电信、政府等对数据一致性和复杂查询需求较高的领域得到广泛应用,树立了其在高端数据库市场中的地位。
二、基本架构与设计理念
(一)MySQL
-
基本架构 :MySQL 采用经典的分层架构。主要包括连接层、查询缓存层、分析器、优化器、执行器以及存储引擎层。连接层负责处理客户端连接、线程管理等;查询缓存层用于缓存查询结果,提高查询效率;分析器对 SQL 语句进行词法和语法分析;优化器根据查询优化算法选择最佳执行计划;执行器负责调用存储引擎层完成实际的数据操作。存储引擎层是 MySQL 的核心组件之一,常用的存储引擎有 InnoDB(支持事务、行级锁、外键等)、MyISAM(不支持事务,读取速度快但写入性能较差)等,不同存储引擎提供不同的功能和性能特点,用户可根据实际需求选择。
-
设计理念 :MySQL 的设计理念强调简单、高效和轻量。它专注于快速处理大量简单的查询请求,特别适合于读操作较多的 Web 应用场景,如内容管理系统、博客平台等。其架构设计注重灵活性,通过插件式的存储引擎架构,用户可以根据不同的应用需求选择合适的存储引擎,以实现性能、功能和可靠性的平衡。
(二)PostgreSQL
-
基本架构 :PostgreSQL 的架构相对较为复杂,它采用面向对象的架构设计理念。其主要组件包括进程管理、解析器、规划器、执行器、存储管理等。进程管理负责管理 PostgreSQL 服务器的多个进程,包括监听进程、后台进程等;解析器对 SQL 语句进行解析,生成内部的表示形式;规划器根据查询优化算法生成执行计划;执行器按照执行计划完成数据操作;存储管理负责数据的存储和读取。PostgreSQL 还具有强大的扩展性,允许用户自定义数据类型、函数、操作符等。
-
设计理念 :PostgreSQL 的设计理念追求功能强大、可扩展性和数据完整性。它旨在提供一个功能齐全的数据库管理系统,支持复杂的数据类型、复杂的查询和事务处理,适用于各种复杂的企业级应用场景,如数据仓库、地理信息系统等。其架构设计强调对标准的严格遵循和对数据一致性的严格保障,在性能和功能之间寻求平衡。
三、MySQL 主要数据类型及使用场景
(一)主要数据类型
-
数值类型 :包括整数类型(如 TINYINT、SMALLINT、MEDIUMINT、INT、BIGINT),用于存储不同范围的整数数据;浮点数类型(如 FLOAT、DOUBLE),用于存储近似值的浮点数;定点数类型(如 DECIMAL),用于存储精确的数值,常用于金融等对数值精度要求较高的场景。
-
字符串类型 :常见的有 CHAR(固定长度字符串)、VARCHAR(可变长度字符串)、TEXT(大文本类型,可存储大量的文本数据),适用于存储文本信息,如用户名、文章内容等。
-
日期和时间类型 :如 DATE(日期)、TIME(时间)、DATETIME(日期和时间)、TIMESTAMP(时间戳),用于存储日期和时间相关的数据,在处理日志记录、时间序列数据等场景中广泛使用。
-
其他类型 :例如 BLOB(二进制大对象),用于存储二进制数据,如图片、文件等。
(二)使用场景
-
Web 应用开发 :在网站的内容管理系统中,使用 VARCHAR 类型存储文章标题、CHAR 类型存储文章分类等固定长度的字符串信息,TEXT 类型存储文章内容。利用日期和时间类型记录文章的发布时间、修改时间等,方便对文章进行时间序列的管理和查询。
-
电子商务应用 :对于商品价格等对精度要求高的数据,使用 DECIMAL 类型存储;使用 INT 类型存储商品库存数量等整数数据。同时,利用 BLOB 类型存储商品图片等二进制数据,方便在网站上展示商品信息。
四、PostgreSQL 主要数据类型及使用场景
(一)主要数据类型
-
基本类型 :涵盖数值类型(与 MySQL 类似,包括整数、浮点数、数值类型等)、字符串类型(如 CHAR、VARCHAR、TEXT)、布尔类型等。
-
复合类型 :允许用户自定义复合类型,可以将多种不同类型的数据组合在一起,形成一个结构化的数据类型,用于存储复杂的数据结构,如一个包含多种信息的用户信息记录。
-
数组类型 :支持一维或多维数组,可以存储相同数据类型的元素集合。例如,可以使用整数数组存储一个班级学生的成绩列表。
-
几何类型 :用于存储平面几何对象,如点、线、多边形等,主要用于地理信息系统(GIS)相关应用,处理地理空间数据。
-
JSON 类型 :支持 JSON 数据类型,可以存储和处理 JSON 格式的文档数据,方便与现代 Web 开发中的前端框架和 NoSQL 数据库进行交互。
(二)使用场景
-
地理信息系统(GIS) :利用几何类型存储地理空间数据,如城市的地图数据、地理坐标等,结合其空间数据处理函数,可以进行地理空间查询和分析,如计算两个地理位置之间的距离、判断某个点是否在某个区域范围内等。
-
企业级复杂应用 :在企业资源规划(ERP)系统中,使用自定义复合类型存储员工的详细信息(包含姓名、年龄、部门、职位等),利用数组类型存储产品的多种属性值等。
-
Web 应用与 NoSQL 集成场景 :借助 JSON 数据类型,可以方便地存储和处理前端传来的 JSON 数据,实现与 NoSQL 数据库类似的灵活数据存储方式,同时又具有关系型数据库的数据一致性和查询性能优势。
五、数据一致性处理机制
(一)MySQL
-
InnoDB 存储引擎 :InnoDB 是 MySQL 的默认存储引擎,它支持事务处理。通过使用事务的四个隔离级别(读未提交、读已提交、可重复读、串行化),可以控制事务之间的数据一致性。例如,在可重复读隔离级别下,InnoDB 使用Next-Key Locking 解决幻读问题,确保在事务执行过程中,其他事务不能插入满足条件的新数据,从而保证事务的隔离性。同时,InnoDB 使用redo log(重做日志)和 undo log(回滚日志)来保证事务的原子性和持久性。Redo log 用于记录数据的物理修改操作,在系统崩溃时可以进行前滚操作恢复数据;undo log 用于在事务回滚时恢复数据到事务开始之前的状态。
-
MyISAM 存储引擎 :MyISAM 不支持事务,它的数据一致性主要依赖于表级锁机制。在读写操作时,会对整个表进行锁定,写操作会阻塞读操作,读操作也会阻塞写操作,这种方式在一定程度上保证了数据的一致性,但在并发性能方面较差,适合读操作较多且对事务支持要求不高的场景。
(二)PostgreSQL
-
多版本并发控制(MVCC) :PostgreSQL 采用 MVCC 机制来实现数据一致性。每个事务在读取数据时,看到的是一个快照数据,这个快照数据是在事务开始时数据库中数据的状态。当一个事务对数据进行修改时,它不会直接修改原数据,而是生成一个新的数据版本。其他事务只有在满足一定条件(如事务隔离级别要求)下才能看到这个新的数据版本。通过这种方式,PostgreSQL 实现了高并发下的数据一致性,避免了读写阻塞问题。同时,PostgreSQL 也支持事务的隔离级别,通过调整事务的隔离级别,可以控制事务之间的数据可见性和一致性。
六、JSON 处理能力对比
(一)MySQL
-
JSON 数据类型支持 :从 MySQL 5.7 版本开始引入 JSON 数据类型,可以存储 JSON 格式的文档数据。但是,其对 JSON 数据的操作功能相对有限,主要提供了一些基本的函数用于提取 JSON 数据中的值、更新 JSON 数据等操作。例如,使用 JSON_EXTRACT() 函数可以提取 JSON 文档中指定路径的值,JSON_SET() 函数可以更新 JSON 文档中的值。
-
查询性能 :在对 JSON 数据进行查询时,由于 JSON 数据是非结构化的,MySQL 需要将 JSON 数据转换为内部的结构化表示形式才能进行查询操作,这在一定程度上会影响查询性能,特别是在处理大量复杂的 JSON 数据时,查询效率可能不如对传统关系型数据的查询。
(二)PostgreSQL
-
JSON 数据类型支持 :PostgreSQL 提供两种 JSON 数据类型,分别是 json 和 jsonb。json 类型存储原始的 JSON 文本数据,而 jsonb 类型存储的是二进制格式的 JSON 数据。Jsonb 类型在存储和查询性能方面更具优势,因为它对 JSON 数据进行了预处理和存储优化。PostgreSQL 提供了丰富的内置函数和操作符来处理 JSON 数据,如可以方便地查询 JSON 数据中的键值对、过滤 JSON 数据、修改 JSON 数据等操作。
-
查询优化与性能 :PostgreSQL 能够对 JSON 数据建立索引,如对 jsonb 类型数据可以创建 GIN(Generalized Inverted Index,通用倒排索引)或 GiST(Generalized Search Tree,通用搜索树)索引。通过索引,可以大大提高对 JSON 数据的查询性能,使其在处理大量 JSON 数据时能够高效地执行查询操作。
七、地理空间数据处理对比
(一)MySQL
-
地理空间数据支持 :MySQL 提供基本的地理空间数据类型,如 GEOMETRY、POINT、LINESTRING、POLYGON 等,用于存储地理空间数据。它支持一些地理空间关系函数,如 ST_Contains()(判断一个几何对象是否包含另一个几何对象)、ST_Distance()(计算两个几何对象之间的距离)等,这些函数可以用于地理空间数据的查询和分析。
-
功能局限性 :相比专业的地理信息系统数据库,MySQL 的地理空间数据处理功能较为有限。在处理复杂的地理空间数据(如地球曲率校正、高级的空间拓扑关系分析等)方面能力不足,更适合一些简单的地理空间数据存储和查询场景,如存储和查询城市中各个门店的位置信息等。
(二)PostgreSQL
-
PostGIS 扩展 :PostgreSQL 通过 PostGIS 扩展提供了强大的地理空间数据处理能力。PostGIS 是一个开源的地理空间数据库扩展,它为 PostgreSQL 添加了对地理空间数据的支持,包括多种几何和地理数据类型(如 geometry、geography),以及丰富的地理空间函数和操作符。例如,可以使用 PostGIS 提供的 ST_Buffer() 函数生成几何对象的缓冲区、ST_Intersection() 函数计算两个几何对象的交集等。
-
专业地理空间处理优势 :PostGIS 支持多种地理投影和坐标系统转换,能够处理复杂的地理空间数据,如全球范围的地理数据、地形数据等。它符合 Open Geospatial Consortium(OGC)的标准规范,具有良好的兼容性和扩展性,被广泛应用于地理信息系统(GIS)、自然资源管理、城市规划等需要精确地理空间数据处理的专业领域。
八、高可用方案对比
(一)MySQL
-
主从复制 :这是 MySQL 最常用的高可用方案。通过设置一台主服务器(Master)和一台或多台从服务器(Slave),主服务器将数据变更的操作日志(Binlog)传递给从服务器,从服务器根据日志重放数据变更操作,从而实现数据的同步。主从复制可以实现读写分离,将读操作分发到从服务器,提高数据库的整体性能。在主服务器出现故障时,可以通过手动或自动的方式将从服务器提升为主服务器,实现高可用。但是,主从复制存在一定的延迟,在数据一致性要求极高且对延迟敏感的场景下可能无法满足需求。
-
半同步复制 :在主从复制的基础上,增加了主服务器在将数据变更操作日志发送给从服务器后,必须等待至少一个从服务器确认收到日志后才能继续执行下一个事务。这种方式相比异步的主从复制,提高了数据的一致性,但会带来一定的性能开销,降低了系统的吞吐量。
-
MHA(MySQL High Availability) :MHA 是一种自动化的 MySQL 高可用解决方案。它可以自动检测 MySQL 主服务器的故障,并在短时间内自动完成从服务器的切换,将从服务器提升为主服务器,同时保证数据的丢失尽可能小。MHA 通常与主从复制结合使用,可以实现较高的可用性,适用于对数据库高可用性要求较高的生产环境。
(二)PostgreSQL
-
流复制(Streaming Replication) :PostgreSQL 的流复制是一种异步或同步的主从复制技术。在异步流复制中,主服务器将写操作日志(Write-Ahead Logging,WAL)发送给从服务器,从服务器异步地应用这些日志,实现数据同步。异步流复制的性能开销较小,但存在一定的数据延迟风险。同步流复制则要求主服务器在将数据提交给客户端之前,必须等待至少一个从服务器确认收到日志并应用,这种方式保证了数据的一致性,但会降低系统的性能。
-
基于触发器的复制 :通过在主服务器上创建触发器,当数据发生变更时,触发器会将变更操作发送给从服务器,从服务器根据接收到的操作信息更新数据。这种方式相对较为灵活,可以根据实际需求定制复制逻辑,但触发器的使用可能会对主服务器的性能产生一定影响,且实现和维护相对复杂。
-
BDR(Bi-Directional Replication) :BDR 是一种多主复制方案,允许多个 PostgreSQL 实例之间互相复制数据。在 BDR 集群中,每个节点都可以进行读写操作,并且数据变更可以自动在集群中传播。BDR 适用于需要多个数据中心之间数据同步或实现复杂的分布式数据库架构的场景,但其配置和管理相对复杂,对网络带宽和稳定性要求较高。
九、扩展开发能力对比
(一)MySQL
-
存储过程与函数 :MySQL 支持存储过程和函数的创建,可以将一组 SQL 语句封装成一个存储过程或函数,方便重复调用和代码复用。在一定程度上可以实现业务逻辑的封装和简化操作。例如,可以创建一个存储过程用于批量更新数据,通过调用该存储过程来完成一系列复杂的更新操作。
-
插件式架构 :MySQL 的插件式架构允许用户通过加载插件来扩展其功能,如添加新的存储引擎、审计插件、认证插件等。这使得 MySQL 具有一定的灵活性,可以根据不同的应用场景选择合适的插件来增强其功能。例如,通过安装特定的存储引擎插件,可以满足不同的数据存储和性能需求。
(二)PostgreSQL
-
存储过程与函数 :PostgreSQL 提供丰富的存储过程和函数编程能力,支持多种编程语言(如 PL/pgSQL、PL/Python、PL/Perl 等)来编写存储过程和函数。相比 MySQL,PostgreSQL 的存储过程和函数功能更加强大,支持复杂的数据类型、游标操作、异常处理等,可以实现更复杂的数据处理逻辑和业务规则。例如,可以编写一个 PL/pgSQL 函数来处理复杂的财务计算逻辑,通过函数调用完成各种财务报表的生成。
-
自定义数据类型和运算符 :PostgreSQL 允许用户自定义数据类型、运算符、函数等,这为扩展数据库的功能提供了极大的灵活性。例如,在金融领域,可以自定义一种货币类型,以及相应的货币转换运算符,方便在数据库中进行货币相关的计算和操作。
-
扩展机制 :PostgreSQL 具有强大的扩展机制,用户可以通过安装扩展(Extension)来快速添加新的功能,如数据类型、索引方法、函数等。社区提供了大量的扩展资源,涵盖了地理空间数据处理、全文检索、数据加密等众多领域,用户可以根据实际需求方便地集成这些扩展,增强 PostgreSQL 的功能。
十、运维成本对比
(一)MySQL
-
简单架构运维优势 :MySQL 的架构相对简单,配置和管理较为容易,对于中小型企业的技术人员来说,容易上手和维护。其安装过程简洁,配置参数相对较少,对服务器硬件资源的要求在一般应用场景下也较为适中。在日常运维中,如性能监控、备份恢复等方面的工具较为成熟和丰富,例如,可以使用开源的监控工具如 Prometheus 配合 Grafana 对 MySQL 的性能指标进行监控,使用 mysqldump 工具进行数据备份和恢复。
-
社区与商业支持成本 :MySQL 拥有庞大的开源社区,社区中提供了大量的免费资源,包括技术文档、解决方案、插件等,这在一定程度上降低了运维成本。同时,甲骨文公司也提供商业支持服务,对于一些对数据库运维有较高要求的企业,可以选择购买商业支持,获得专业的技术支持和维护服务,不过这会增加一定的成本。
(二)PostgreSQL
-
复杂架构运维挑战 :PostgreSQL 的架构较为复杂,其众多的特性和功能(如多种数据类型、复杂的查询优化等)需要运维人员具备较高的技术水平和经验。其配置参数较多,对服务器的硬件资源(如内存、CPU)要求在处理复杂查询和大数据量时可能较高。在性能优化方面,需要深入理解其查询优化器、索引机制等工作原理,才能有效地进行调优,这对运维人员提出了更高的要求。
-
社区支持与商业服务成本 :PostgreSQL 同样拥有活跃的开源社区,社区中提供了丰富的技术交流和资源分享。然而,相比 MySQL,其商业支持服务的选择相对较少,但随着 PostgreSQL 在企业级应用中的逐渐普及,一些专业的数据库服务提供商也开始提供 PostgreSQL 的商业支持服务,价格通常会根据服务内容和级别有所不同。总体来说,PostgreSQL 的运维成本相对较高,但其强大功能和可靠性能在一些对数据库要求较高的场景中是值得的。
十一、主要区别、应用场景及适用范围
(一)主要区别
-
数据模型与功能 :MySQL 侧重于简单、高效的事务处理和数据存储,功能相对较为基础;PostgreSQL 提供复杂的数据模型、丰富的数据类型和高级的查询功能,如对地理空间数据的处理、JSON 数据的复杂查询等。
-
性能特点 :MySQL 在处理大量简单的读写操作时性能表现出色,特别是对于 Web 应用中的高并发读操作有很好的支持;PostgreSQL 在处理复杂的查询、高并发的写操作以及数据一致性要求高的场景下性能更优。
-
扩展性与定制性 :PostgreSQL 具有更强的扩展性和定制性,支持自定义数据类型、函数、存储过程等多种扩展方式;MySQL 的扩展性相对较弱,但通过插件式架构可以在一定程度上进行功能扩展。
(二)应用场景
-
MySQL :适用于 Web 应用开发中的内容管理系统、博客平台等对读操作性能要求高、数据模型相对简单的场景;适合电子商务网站中对简单事务处理要求较高的场景,如商品展示、用户订单处理等;在大数据量的简单查询分析场景(如数据仓库中的部分简单报表生成)中也有应用。
-
PostgreSQL :适用于地理信息系统(GIS)、企业资源规划(ERP)、金融系统等对复杂数据类型处理、数据一致性和复杂查询要求高的企业级应用;在需要与 NoSQL 数据库交互或处理 JSON 数据的复杂场景(如现代 Web 应用的后端服务与前端框架的深度集成)中表现出色;在需要高并发写操作和复杂事务处理的场景(如电信计费系统等)中能够提供可靠的性能保障。
(三)适用范围
-
MySQL :适合对成本敏感、对数据库功能要求不高、以读操作为主的小型和中型互联网企业、创业公司;适合那些对数据库架构简单性要求高,运维人员技术水平有限的企业。
-
PostgreSQL :适合对数据一致性要求高、需要处理复杂业务逻辑和数据类型的企业;适用于大数据量、高并发写操作场景以及对数据库扩展性和定制性有较高要求的项目;在高端数据库市场,如金融、电信等行业的重要业务系统中得到广泛应用。
相知不迷路,来者皆是兄弟,微信搜索 :“codingba” or “码出精彩” 交朋友