单调队列优化dp

题目描述
给你一个整数数组 nums 和一个整数 k ,请你返回「非空」子序列元素和的最大值,子序列需要满足:子序列中每两个「相邻」的整数 nums[i] 和 nums[j],它们在原数组中的下标 i 和 j 满足 i < j 且 j - i <= k 。

数组的子序列定义为:将数组中的若干个数字删除(可以删除 0 个数字),剩下的数字按照原本的顺序排布。

示例 1
输入:nums = [10,2,-10,5,20], k = 2
输出:37
解释:子序列为 [10, 2, 5, 20] 。
1
2
3
示例 2
输入:nums = [-1,-2,-3], k = 1
输出:-1
解释:子序列必须是非空的,所以我们选择最大的数字。
1
2
3
示例 3
输入:nums = [10,-2,-10,-5,20], k = 2
输出:23
解释:子序列为 [10, -2, -5, 20] 。
1
2
3
提示
1 <= k <= nums.length <= 1e5
-1e4 <= nums[i] <= 1e4
题目讲解
本题求解的是最大「非空」子序列元素和,且相邻两个元素坐标差小于等于 k。由于题目的主体是子序列,因此我们采取一种「增量式」的思想来进一步思考。

假设当前有一个子序列 A,现在想在 A 后面再添加一个元素 x,则我们只需要考虑 x 和 A 中最后一个元素的坐标差是否小于等于 k,而不用考虑 A 中的所有元素。更明确地说,对于子序列 A,我们只需要记录它的元素和与最后一个元素的下标即可。

基于上述的思考,不难想到使用动态规划的算法,令 f[i] 表示以 nums[i] 为子序列最后一个元素时的最大元素和,则可以得到如下递推公式:
f [ i ] = max ⁡ ( f [ j ] , 0 ) + n u m s [ i ] ( i − k ≤ j < i ) f[i]=\max(f[j],0)+nums[i]\ \ \ (i-k\leq j<i)
f[i]=max(f[j],0)+nums[i] (i−k≤j<i)

根据上述公式,我们可以得到一种暴力的做法,即对于每一个 i,向前枚举合法的 j 来更新 f[i],时间复杂度为 O(nk)。

观察题目中的数据范围,暴力做法很明显无法通过,因此我们考虑如何优化。

f[i] 由前面 k 个数中的最大值转移而来,因此不难想到使用「单调队列」算法来进行优化。用「单调队列」来维护 f 数组中大小为 k 的窗口的最大值即可完成此题,时间复杂度优化至 O(n),具体细节见代码。

通过此题,我们可以更深刻地意识到,「单调队列」在求取「数组中每一个元素其固定区间范围内的最大 / 小值」的作用。而也正是该功能,使得「单调队列」常作为「动态规划」的一种优化手段出现在面试题中。
————————————————
版权声明:本文为CSDN博主「Gene_INNOCENT」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_41552508/article/details/114909195


在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
单调队列优化DP是一种常用的优化方法,可以将时间复杂度从 $O(n^2)$ 降低到 $O(n)$ 或者 $O(n \log n)$。以下是一道利用单调队列优化DP的典型题目: 题目描述: 给定一个长度为 $n$ 的序列 $a_i$,定义 $f(i)$ 为 $a_i$ 到 $a_n$ 中的最小值,即 $f(i) = \min\limits_{j=i}^n a_j$。现在定义 $g(i)$ 为满足 $f(j) \ge a_i$ 的最小下标 $j$,即 $g(i) = \min\{j \mid j > i, f(j) \ge a_i\}$。如果不存在这样的下标 $j$,则 $g(i) = n+1$。 现在请你计算出 $1 \le i \le n$ 的所有 $g(i)$ 的值。 输入格式: 第一行包含一个整数 $n$。 第二行包含 $n$ 个整数 $a_1,a_2,\cdots,a_n$。 输出格式: 输出 $n$ 行,第 $i$ 行输出 $g(i)$ 的值。 输入样例: 5 3 1 2 4 5 输出样例: 2 5 5 5 6 解题思路: 设 $dp(i)$ 表示 $g(i)$,那么 $dp(i)$ 与 $dp(i+1)$ 的转移关系可以表示为: $$dp(i)=\begin{cases}i+1, &\text{if}\ f(i+1)\ge a_i \\dp(i+1), &\text{else}\end{cases}$$ 这个转移方程可以使用暴力 DP 解决,时间复杂度为 $O(n^2)$。但是,我们可以使用单调队列优化 DP,将时间复杂度降为 $O(n)$。 我们定义一个单调队列 $q$,存储下标。队列 $q$ 中的元素满足: - 队列中的元素是单调递减的,即 $q_1 < q_2 < \cdots < q_k$; - 对于任意的 $i\in [1,k]$,有 $f(q_i) \ge f(q_{i+1})$。 队列 $q$ 的作用是维护一个长度为 $k$ 的区间 $[i+1,q_k]$,满足这个区间中的所有 $j$ 都满足 $f(j) < f(i+1)$。 根据定义,当我们要求 $dp(i)$ 时,只需要查找队列 $q$ 中第一个满足 $f(q_j) \ge a_i$ 的位置 $q_j$,那么 $g(i) = q_j$,如果队列 $q$ 中不存在这样的位置,则 $g(i) = n+1$。 那么如何维护单调队列 $q$ 呢?我们可以在每次 DP 的过程中,将 $i$ 加入队尾。然后判断队首元素 $q_1$ 是否满足 $f(q_1) \ge a_i$,如果满足则弹出队首元素,直到队首元素不满足条件为止。 由于每个元素最多被加入队列一次,并且最多被弹出一次,因此时间复杂度为 $O(n)$。具体实现细节可以参考下面的代码实现:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值