368. Largest Divisible Subset

这篇博客探讨了一道关于接龙问题的算法题,与300. Longest Increasing Subsequence 和 354. Russian Doll Envelopes 类似。作者通过动态规划的方法,固定一个位置并遍历前序节点,寻找最大可整除子集,并用前序节点数组记录。代码示例展示了如何实现这一解决方案。作者反思自己在理解题目上的不足,并表示将深入思考这个问题。
摘要由CSDN通过智能技术生成

这道题目是二刷了,还是没有印象。

总结不到位导致的问题出现。

这道题目和之前的354. Russian Doll Envelopes 俄罗斯套娃,leetcode 300 一样的题型。

属于接龙问题。

思路也是相似的,固定好i 以后,遍历j从0到i-1.

然后寻找dp[j]+1的最大值。

并且用prev数组去记录前序节点。

代码如下:

class Solution {
public:
    vector<int> largestDivisibleSubset(vector<int>& nums) {
        // DP 的状态为当前位置的divisible 个数。这道题和最长LIS一样的想法。
        // 用prev数组来记录前序节点的位置。
        // DP地推公式是从当前位置往前找,找到第一个比他小并且可以被整除的个数。
        // DP[i] = DP[j] + 1
        int n=nums.size();
        sort(nums.begin(), nums.end());
        vector<int> dp(n, 1);
        vector<int> prev(n, -1);
        
        for(int i = 1;i<n;i++){
            for(int j = i-1;j>=0;j--){
                if(nums[i] > nums[j] && nums[i]%nums[j] ==0)
                    if(dp[i] < dp[j] + 1){
                        dp[i] = dp[j] + 1;
                        prev[i] = j;
                    }
            }
        }
        
        int m =0;
        int maxIndex=0;
        
        for(int i =0;i<n;i++){
            if(dp[i] > m){
                m = dp[i];
                maxIndex = i;
            }
        }
        
        vector<int> ret;
        while(maxIndex !=-1){
            ret.push_back(nums[maxIndex]);
            maxIndex = prev[maxIndex];
        }
        
        return ret;
    }
};

想不明白为啥不长记性!!!这个问题值得深思。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值