电子制造转型案例:企业如何搭建生产质量管理与追溯体系?

目录

前言概述

业务背景

典型业务难题

智能制造解决思路

1.智能检测与协同,严控产品质量

2.数字化工艺管控方案

3.一站式追溯管理系统

4.质量数据智能分析系统

总结

智能制造模板

推荐阅读


前言概述

生产质量管理与追溯是指在生产过程中依据质量管理体系开展质量校验与数据记录,对不合格品严格管控处理,借助追溯码等实现产品全生命周期数据的快速查找,第一时间精准追溯问题与认定责任。

其核心价值在于,通过全流程质量管控和精准信息追溯,帮助提升产品品质、降低质量风险,从源头到终端全方位保障企业效益与品牌声誉。

业务背景

电子制造行业作为智能制造的关键细分领域,涵盖从电子元器件采购、复杂生产工艺加工到成品组装与销售的全流程,产品广泛应用于消费电子、通信、汽车电子等多个领域。在管理生产质量上面临诸多挑战,比如元器件批次质量差异大,导致产品性能不稳定、增加返工成本与延误交付;比如生产工艺复杂,不同生产线和班次的操作差异使得产品质量一致性难以保障等等。

为解决上述多个问题,以电子制造行业为案例,详细分享如何通过智能制造产品解决典型场景问题,分别对应有哪些解决方法,如何去落地解决等,以及落地后实现价值等,希望对各位老板在管理车间生产质量和问题追溯有参考价值或思路,主要包括如下:

  • 业务典型难题与案例
  • 智能制造解决思路
  • 生产质量管理解决方法
  • 制造方案落地实施价值
  • 智能制造解决模板

典型业务难题

说明:如果您遇到以下同样场景痛点,可下滑查看对应的解决方法,同时文末附该方案解决模板,您可以根据实际需求进行调整,实现随改随用。

1.元器件批次质量差异大

  • 电子制造中使用的元器件种类繁多,不同批次的元器件在性能、参数上可能存在细微差异。
  • 比如智能手机制造在企业生产过程中,因不同批次的电容存在容值偏差,导致部分手机主板出现信号不稳定、电池功耗异常等问题,但这些问题在成品检测才被发现,不仅增加返工成本,也延误交付。

2.复杂生产工艺致使质量一致性难以保障

  • 由于电子制造涵盖 SMT 贴片、插件、焊接、组装等复杂工艺,各环节相互影响,不同生产线、班次的操作人员技能水平和操作习惯有差异,产品质量一致性难以保证。
  • 比如某智能穿戴设备生产企业,不同生产线生产的同款产品在防水、信号强度等关键指标上差异明显,导致客户投诉较多,增加售后维修成本。

3.产品质量追溯链条易断裂

  • 电子制造产品供应链长,涉及多环节,传统追溯依赖纸质单据和人工录入,信息易丢失或错误。一旦出现质量问题,难以定位或追溯产品从原材料采购到成品销售的全过程。
  • 比如某平板电脑生产企业因某批次产品屏幕闪烁需召回,却因追溯信息缺失,无法准确确定受影响产品范围和流向,导致召回不彻底,引起大量退款投诉。

4.缺乏专业数据分析平台

  • 某电子元件制造企业在长期生产中积累海量质量检测数据,包括半成品和成品检测结果、设备运行状况及工序工艺参数等关键信息。
  • 但这些数据或以纸质形式存储,或分散在独立系统中,缺乏有效整合,导致企业难以深入分析数据、精准定位质量问题根源,致使问题反复出现,制约生产效率和产品质量提升。

智能制造解决思路

1.智能检测与协同,严控产品质量

通过借助智能传感器和物联网设备,在供应商生产车间及原材料运输环节部署智能传感器,实时监测生产环境参数,如温度、湿度、震动等对元器件质量有影响的因素。

在智能制造供应商管理平台(SRM)MES生产管理系统无缝对接,其中SRM有专门设置参数监控模块,24小时实时监控原材料批次、生产设备运行状况等关键参数,并在可视化、报表分析等更新生产进度、原材料库存等,实现远程监控生产全过程,无需再跑到线下车间核对。

通过设置智能助手监控质量预警模型,当系统监控到数据超出预警范围,则自动向指定的采购部门、质量管控部门以及供应商负责人等发送预警(支持多渠道:短信、邮件、小程序等),便于及时调整生产或运输策略,将风险降到最低。

实施价值:产品不良率降低40%,产品返工率下降35%,有效缩短了产品交付周期。

2.数字化工艺管控方案

在智能制造平台落地数字化工艺管理系统,将每道生产工艺的标准参数、操作流程、质量检测要点等录入系统。生产过程中,通过传感器实时采集设备运行参数、工艺执行数据,并与标准参数比对。一旦出现偏差,系统自动报警并提示操作人员调整。

另外支持使用AI工艺优化系统,通过利用人工智能算法对生产工艺数据进行深度分析,建立工艺参数与产品质量的关联模型。实现实时采集生产数据,自动优化工艺参数,如在 SMT 贴片工艺中,根据元器件特性和生产环境实时调整贴片速度、温度等参数,确保产品质量稳定。

如果工厂已经部署智能视觉检测设备,支持无缝集成该设备,系统将检测数据与标准数据进行对比,一旦发现或识别质量缺陷,立即发出警报并自动记录缺陷位置和类型,为后续工艺改进提供数据支持。

实施价值:不同生产线产品的关键指标差异缩小了50%,售后维修率降低30%,产品质量得到显著提升。

3.一站式追溯管理系统

智能制造平台支持无缝集成企业已有的ERP系统、MES、WMS等,便于打造一体化追溯管理系统。在该平台从原材料采购开始,自动为每一个产品生成唯一指定的数字身份编码(支持自定义生成条码、二维码内容和样式),记录从原材料到成品的全流程信息,包括供应商信息、生产批次、生产时间、质检结果、物流轨迹等。

在生产、仓储、物流等环节,工作人员通过手持移动端扫描设备,对产品编码进行扫码操作,实时更新产品位置和状态信息。负责人可通过移动端扫描或输入产品编码,即可查询该产品详细追溯信息,确保质量问题可精准追溯。

注:也支持另外设置小程序售后扫描查询,消费者可通过扫码在该账户进行绑定该设备,追溯和查找该设备相关信息。以下是以某家电制造为演示效果。

实施价值:质量追溯准确率达到99%以上,问题产品召回范围缩小40%,召回时间缩短70%,极大降低了召回成本和品牌损失。

4.质量数据智能分析系统

企业可在智能制造报表(分析)平台搭建质量数据智能分析系统,基于大数据技术,系统自动整合企业内外部质量数据,包括生产过程、市场反馈、质检反馈等,进行多维度深入分析,实时展示多维度数据。比如通过关联分析找出影响产品质量的关键因素,通过预测分析提前发现质量风险。

管理层可通过建立质量数据驱动决策,将质量数据分析结果与企业生产决策流程进行结合,系统根据自动生产质量报告和建议并抄送给管理层,管理层可用于调整或优化工艺参数、改进产品设计。

同时支持设置报表数据精细化,将指定的数据共享给指定的部门、员工等,实现全流程质量协同管理。

实施价值:通过深度数据分析,产品合格率提升20%,生产过程中的质量问题发生率降低35%,为企业节约大量的生产成本,提升生产效率和产品质量。

总结

本期分享智能制造-生产质量管理与追溯解决方案主要通过智能检测与协同、数字化工艺管控、大数据深度挖掘等,帮助电子制造工厂实现全方位的质量管控与追溯能力提升,降低质量风险与管理成本,优化生产效率,增强生产过程的透明度与可控性。

智能制造模板

由于篇幅有限,以上仅分享智能制造产品之一场景解决方案--生产质量管理与追溯场景,点击这里抢先领取解决方案。下期我们将继续分享更多智能制造具体场景解决方案,帮助您顺利进行工厂数字化转型,实现降本增效。

若您想持续关注智能制造领域的前沿技术和实用方案,欢迎关注智能制造速融云,后续将继续分享更多智能制造解决方案。

推荐阅读

想详细了解更多制造生产管控方案,点击下方即可获取对应的具体场景解决方案(附方案模板)。


生产任务下达与跟踪场景

生产工艺参数监控场景

在制品管理场景

生产数据采集与分析场景

车间现场可视化管理场景

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值