Blob分析

Blob分析用于图像中相同像素连通域的检测,常见于机器视觉的有无检测和缺陷检测,如纺织品瑕疵、玻璃缺陷等。主要过程包括获取图像、分割、特征提取。图像预处理和动态获取分割参数是关键步骤,常用算子包括均值滤波、高斯滤波和直方图二值化。特征提取涉及区域和灰度特征,例如面积、力矩和平均灰度值。
摘要由CSDN通过智能技术生成


1、意义

Blob分析是对图像中相同像素的连通域进行分析,该连通域称为Blob。

Blob分析可为机器视觉应用提供图像中的斑点的数量、位置、形状和方向,还可以提供相关斑点间的拓扑结构。


2、适用范围

仅针对二维目标图像和高对比度图像,适用于有无检测和缺陷检测。

纺织品的瑕疵检测,玻璃的瑕疵检测,机械零件表面缺陷检测,可乐瓶缺陷检测,药品胶囊缺陷检测等很多场合都会用到blob分析。


3、Blob分析的主要过程

获取图像->分割图像(区分前景像素和背景像素)->特征提取(比如面积、重心、旋转角度等)

halcon代码实现:

read_image(Image,'particle')

threshold(Image, BrightPixels,120,255)

connection(BrightPixels,Particles)

area_center(Particles,Area,Row,Column)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天上人间555

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值