回归 ---- 线性回归,多元回归与逻辑回归的关系

线性与逻辑回归解析
本文探讨了线性回归的基本原理及其应用场景,包括简单回归与多元回归,并介绍了如何通过最小二乘法和梯度下降法来优化模型。此外,还讨论了逻辑回归作为一种分类方法的应用,特别是针对二分类问题。

线性回归:

线性回归假设特征和结果满足线性关系,每个特征都有一个参数,也就是它的影响力。而且每个特征变量可以首先映射到一个函数,然后再参与线性计算。这样就可以表达非线性关系。

只有一个自变量的情况叫做简单回归, 多个自变量情况的叫做多元回归

 

简单回归:y= a + b*x

多元回归:h(x)= θ0 + θ1*x1 + θ2*x2 + ...

损失函数:j(θ), 对x(i)的估计值与真实值y(i)差的平方和

我们的目标是最小化j(θ)。可以通过最小二乘法,或者梯度下降法来确定这个

最小二乘法:直接计算    

梯度下降法:首先对θ赋一个初值,改变θ的值,使得J(θ)按梯度下降的方向进行减少。

梯度方向由J(θ)对θ的偏导数确定,由于求的是极小值,因此梯度方向是偏导数的反方向

迭代更新的方式,批梯度下降:对全部的训练数据求得误差后再对θ进行更新,这种方法能够不断收敛;

增量梯度下降:每扫描一步都要对θ进行更新,这种方法结果可能不断在收敛处徘徊。

一般来说,梯度下降法收敛速度还是比较慢的。

 

逻辑回归:(处理分类)

分类是预测离散或标称值,而回归用于预测连续或有序值。

回归是连续型模型,而且受噪声影响比较大,一般不用做分类。如果非要做分类,可以使用逻辑回归处理二分类问题。

逻辑回归本质上是线性回归,只是在特征到结果的映射再做一个映射,将连续值映射到0和1上。即先对特征线性求和,然后使用函数g(z)作为假设函数来预测。



逻辑回归是一种常用的预测分析算法,基于概率理论,在机器学习中属于监督式学习的判别模型,主要分为二元逻辑回归、多元逻辑回归有序逻辑回归三种类型,适用于不同的分类场景 [^1][^3][^4]。 ### 原理 逻辑回归基于线性回归模型,核心原理是对数几率自变量的线性关系线性回归函数输出的结果会经过逻辑函数(Sigmoid函数)处理,Sigmoid函数将任意实数映射到[0, 1]区间,这样就能把线性回归的输出表示为样本属于正类的概率,用于二分类问题中预测一个事件发生的概率 [^1][^2][^3]。模型参数通过最大似然估计法求解,在实际应用中,为了最小化负对数似然损失函数,会利用梯度下降等优化算法来寻找最优参数。为防止过拟合,还会引入L1L2等正则化方法 [^4]。 ### 应用 逻辑回归在很多领域都有广泛应用,常见于二分类问题,例如在医学领域可用于判断患者是否患有某种疾病;在金融领域可用于评估客户是否会违约;在市场营销中可预测客户是否会购买产品等。 ### 实现 在Python中可以使用`scikit-learn`库来实现逻辑回归,以下是一个简单的示例代码: ```python from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 生成示例数据 X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, n_redundant=0, random_state=42) # 划分训练集测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建逻辑回归模型 model = LogisticRegression() # 训练模型 model.fit(X_train, y_train) # 预测 y_pred = model.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print(f"Accuracy: {accuracy}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值