小飞龙程序员
想赢并不一定要有实力和本钱,最重要的是有信心和胆识,放弃,就一定会输,尝试还有一半的机会。
展开
-
机器学习------常用包的导入
# 1、线性回归、逻辑回归、L1、L2正则化from sklearn.linear_model import LinearRegression,LogisticRegression,Ridge,Lasso#正则化# 2、神经网络from sklearn.neural_network import MLPClassifier,MLPRegressor# 3.支持向量机from sklearn.svm import SVR,SVC# 4.聚类算法:from sklearn.cluster impo原创 2022-05-24 17:12:26 · 387 阅读 · 0 评论 -
机器学习项目一:共享单车
import numpy as npimport pandas as pdfrom sklearn.decomposition import PCA,TruncatedSVDfrom sklearn.linear_model import Lasso,Ridge,LinearRegressionfrom sklearn.pipeline import Pipelinefrom sklearn.preprocessing import StandardScaler,MinMaxScaler,Lab原创 2022-01-04 21:33:03 · 928 阅读 · 0 评论 -
机器学习----单变量、多变量线性回归,逻辑回归,神经网络练习
1.单变量线性回归练习import numpy as npimport matplotlib.pyplot as pltimport pandas as pdimport warningswarnings.filterwarnings('ignore')# 1、导入相关包# 2、手写读取数据data=[[230.1,37.8,69.2,22.1],[44.5,39.3,45.1,10.4],[17.2,45.9,69.3,9.3], [151.5,41.3,58.5,18.5]原创 2021-11-13 19:57:45 · 1499 阅读 · 0 评论 -
机器学习----线性回归、逻辑回归、线性回归正则化、逻辑回归正则化底层代码
函数封装1.线性回归模型函数#模型def model(x,theta): return x.dot(theta2.代价函数#代价函数def cost(h,y): # return 1/(2*m)*(np.sum(h-y))**2 J=1/(2*m)*(h-y).T.dot(h-y) return J3.梯度下降函数#梯度下降函数def tidudecline(x,y,alpha,nums): m, n = x.shape #如果为单变量线原创 2021-11-17 17:46:10 · 877 阅读 · 0 评论 -
机器学习------神经网络中sigmoid、tanh、relu激活函数
sigmoid函数sigmoid函数也叫Logistic函数,用于隐层神经元输出,取值范围为(0,1),它可以将一个实数映射到(0,1)的区间,可以用来做二分类。在特征相差比较复杂或是相差不是特别大时效果比较好。Sigmoid作为激活函数有以下优缺点:优点:平滑、易于求导。缺点:激活函数计算量大,反向传播求误差梯度时,求导涉及除法;反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练。sigmoid函数是机器学习中的一个比较常用的函数,与之类似的还有softplus和softmax原创 2021-11-08 11:30:02 · 1182 阅读 · 0 评论 -
机器学习------神经网络正向传播和反向传播公式
神经网络原创 2021-11-18 17:19:24 · 1082 阅读 · 0 评论 -
机器学习算法----单变量、多变量线性回归,逻辑回归函数封装
机器学习机器学习分为监督学习和无监督学习,监督学习为有标签,无监督学习无标签。监督学习分为分类和回归,而无监督学习包括聚类和降维。分类是预测的结果可列出,成为分类问题,为离散型;回归预测的结果是不可列出的,成为回归问题,为连续型。1.函数1.1 模型函数# 定义x*theta函数def model(x,theta): return x.dot(theta)1.2 sigmoid函数# 定义sigmoid函数 h(theta*x)=h(z)=1/(1+e-z)def sigmoid(原创 2021-11-12 19:27:33 · 825 阅读 · 3 评论 -
机器学习----神经网络底层、调库,混淆矩阵和分类报告
1. 神经网络底层import numpy as npimport matplotlib.pyplot as pltfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import confusion_matrix,classification_reportimport warningswarnings.filterwarnings('ignore')from sklearn.neural_netwo原创 2021-11-29 17:40:12 · 1139 阅读 · 0 评论 -
机器学习----神经网络二分类数据集练习
from sklearn.datasets import load_iris,load_boston,load_breast_cancer,load_diabetesfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import MinMaxScaler,StandardScalerimport numpy as npimport matplotlib.pyplot as plt#加载数据集原创 2021-11-20 20:52:32 · 2099 阅读 · 0 评论 -
机器学习-----支持向量机(support vector machine),获取网格、画分界线、分界面图
支持向量机(support vector machine)1. 支持向量机练习1```pythonimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets import load_irisfrom sklearn.svm import SVC,SVRfrom sklearn.model_selection import train_test_splitimport warningswarnings.filt原创 2021-11-24 15:44:00 · 1137 阅读 · 0 评论 -
非监督学习,sklearn聚类,降维,决策树
1.聚类(k=4)from sklearn.cluster import KMeansimport numpy as npimport matplotlib.pyplot as pltimport warningswarnings.filterwarnings('ignore')from pylab import *mpl.rcParams['font.sans-serif'] = ['SimHei']# k-means# k均值聚类算法# 1.导入聚类包 from sklearn.cl原创 2021-11-26 20:08:07 · 1565 阅读 · 0 评论 -
机器学习项目四:航空
import pandas as pdimport numpy as npimport datetimeimport warningsimport matplotlib.pyplot as pltfrom sklearn.preprocessing import StandardScalerfrom sklearn.cluster import KMeans,DBSCANplt.rcParams['font.family']='SimHei'warnings.filterwarnings(原创 2022-01-04 22:08:28 · 529 阅读 · 0 评论 -
图像------opencv常用函数
1. 图片读取import cv2import matplotlib.pyplot as pltos.environ['TF_CPP_MIN_LOG_LEVEL']='3'#读取图片img=cv2.imread(r'E:\ana\envs\tf14\day06\aaa.jpg')print(img.shape)#img.shape=(750, 500, 3)print(img.size)#1125000=750*500*3print(img.dtype)#uint8#显示图片cv2.im原创 2022-02-02 00:13:17 · 992 阅读 · 0 评论 -
Seaborn绘图
1. 分布散点图、分布密度图、箱线图、小提琴图import seaborn as snsimport matplotlib.pyplot as plt#分布散点图def strip(): data=sns.load_dataset('tips') print(data) sns.stripplot( data=data, x='day', y='total_bill', hue='sex', do原创 2022-01-04 22:12:42 · 469 阅读 · 0 评论 -
机器学习----sklearn线性回归、逻辑回归、神经网络、支持向量机、聚类(kmeans)、降维(PCA)、决策树(CART)、朴素贝叶斯、k-近邻(KNN)
sklearn机器学习算法1.逻辑回归: from sklearn.linear_model import logisticRegression2.朴素贝叶斯: from sklearn.naive_bayes import GaussianNB3.k-近邻:from sklearn.neighbors import KNeighborsClassifier4.决策树:from sklearn.tree import DecisionTreeClassifier5.聚类算法:from sklear原创 2021-12-29 17:29:07 · 659 阅读 · 0 评论 -
机器学习------pandas独热、相关性、绘图
1. pandas独热import pandas as pddef main(): info_list=[ ['greed','A'], ['blue','B'], ['red', 'C'] ] df_info=pd.DataFrame( data=info_list, columns=['color','level'] ) print(df_info) df_1=pd.get原创 2021-12-11 19:21:21 · 525 阅读 · 0 评论 -
机器学习-----聚类kmeans肘部图、轮廓图的绘制、以及聚类和聚类中心散点图的绘制
1.kmeans肘部图和DBSCAN轮廓图import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.cluster import KMeansfrom sklearn.metrics import silhouette_score# 3.读取drink.txt文件,完成一下处理data=pd.read_csv('drink.txt')print(data)# x=data.iloc[:,原创 2021-12-29 17:17:32 · 5901 阅读 · 1 评论 -
机器学习项目三:纪录片播放量
from sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.decomposition import PCA,TruncatedSVDfrom sklearn.linear_model import Ridgefrom sklearn.preprocessing import StandardScaler,MinMaxScalerfrom sklearn.metrics import r2_score,roc_auc原创 2022-01-04 22:04:38 · 440 阅读 · 0 评论 -
机器学习----KNN底层
import numpy as npimport matplotlib.pyplot as pltdef main(): np_datas_train=np.array( [[3,104,0], [2,100,0], [1,81,0], [101,10,1], [99,5,1], [98,2,1] ] ) test_x=np.array([原创 2021-12-29 17:38:53 · 237 阅读 · 0 评论 -
机器学习----项目练习
1. 泰坦尼克号练习import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsfrom sklearn.preprocessing import StandardScalerfrom sklearn.model_selection import train_test_split,GridSearchCVfrom sklearn.linear_model import Lass原创 2021-12-29 18:03:43 · 397 阅读 · 0 评论 -
机器学习------Kmeans、KNN、pca降维、朴素贝叶斯底层原理
1.kmeans底层import numpy as npimport warningswarnings.filterwarnings('ignore')# 1.使用K-means底层,完成以下操作# 数据集[[1, 2], [2, 2], [6, 8], [7, 8]]x=np.array([[1, 2], [2, 2], [6, 8], [7, 8]])# (1)将数据集使用合适方式进行处理(10分)# (2)使用随机方式,初始化质心(10分)center=np.array([[1,2]原创 2021-12-26 18:38:13 · 598 阅读 · 0 评论 -
机器学习-------朴素贝叶斯、多项式贝叶斯、高斯贝叶斯调库
1.贝叶斯调库# 1. 导入必要的数据集(10分)import numpyfrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.naive_bayes import GaussianNB # 高斯朴素贝叶斯from sklearn.metrics import accuracy_scorefrom sklearn.metrics import原创 2021-12-29 17:27:11 · 587 阅读 · 0 评论 -
机器学习之无监督学习----kmeans聚类底层和调库
1.聚类底层import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport warningsfrom sklearn.neighbors import KNeighborsRegressor,KNeighborsClassifierwarnings.filterwarnings('ignore')plt.rcParams['font.family']='SimHei'def main(): #1原创 2021-12-29 17:34:44 · 313 阅读 · 0 评论 -
机器学习----聚类DBSCAN
1.轮廓系数import pandas as pdimport numpy as npfrom sklearn.cluster import KMeans,DBSCANimport matplotlib.pyplot as pltfrom sklearn.metrics import silhouette_scoredef main(): np_datas = np.loadtxt(r"./good.txt", delimiter=", ") x = np_datas[:, :-原创 2021-12-29 17:34:01 · 1347 阅读 · 0 评论 -
机器学习------PCA降维底层、数据预处理(标准化、二值化、独热)、管道
1.PCA降维底层方法一:import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsdef pca(n_components,data): # print(data) x = np.cov(data) # print(x) # 取出特征值和特征向量 t_value, t_vector = np.linalg.eig(x) # p原创 2021-12-11 19:20:29 · 658 阅读 · 0 评论 -
机器学习理论知识总结
知识点总结1.机器学习知识框架**分类(classification)????*支持向量机(svm)、逻辑回归、最近邻、随机森林、Naive Bayes、神经网络。回归(regression):线性回归(linear regression)、岭回归(ridge regression)、支持向量回归(svr)聚类(clustering):K-Means、Spectral Clustering(谱聚类)、均值漂移(mean-shift)降维(demensionality reduction):主成分分原创 2021-12-04 10:42:56 · 481 阅读 · 0 评论 -
机器学习项目二:泰坦尼克号
import datetimeimport numpy as npimport pandas as pdimport seaborn as snsimport matplotlib.pyplot as pltfrom sklearn.metrics import roc_curve,r2_score,roc_auc_scorefrom sklearn.preprocessing import StandardScalerfrom sklearn.decomposition import PCA原创 2022-01-04 21:59:08 · 648 阅读 · 0 评论 -
自然语言------结巴(jieba)、词云(wordcloud)和词频统计(TfidfVectorizer)
1. 结巴words='天王盖地虎我在山中走'd=jieba.cut(words,cut_all=False)dd=list(d)print(dd)print(' '.join(dd))print('--------------------------')d1 = jieba.cut(words, cut_all=True)dd1=list(d1)print(dd1)print(' '.join(dd1))print('------------------------------')原创 2021-12-21 11:21:30 · 462 阅读 · 0 评论 -
Seaborn绘图、降维、归一化、网格交叉验证求最优参数alpha、多项式预处理练习
1. seaborn绘图import seaborn as snsimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets import load_bostonfrom sklearn.decomposition import PCAfrom sklearn.model_selection import GridSearchCV,train_test_splitfrom sklearn.preprocessin原创 2021-12-11 19:59:32 · 434 阅读 · 0 评论