分析:
1 2 3 (4) 5 6
对于每一个数都可以当做根节点。并且满足BST的话,比它小的数都要在左边,比它大的数都要在右边。比如4作为根节点时:
左边的数又可以继续拆分。左边1 2 3,每一个数字又可以作为根节点。 比如1作为根节点,NULL为左边,2,3在右边
右边同理也可以这样对待。右边5 6,每一个数又可以作为根节点。
递归!
思路:
1)找当前串中的每一个数。
2)创建一个vector<TreeNode *> 用来存当前树(返回值)。若start>end,存空树。
3)找到它左边的一系列可能的树,右边一系列可能的树。
4)找到左边和右边可能的树。构建当前树。
5)返回当前树
注意!每次都要创建一个新的vector存当前树。而不能是当成全局的大数组往里放东西。因为这个是要作为返回值的,返回当前树的样子。
时间复杂度:
卡特兰数问题,所以是NP。
优化:
用DP存递归中途的结果。how??? 但是会耗费大量空间。
Code(C++):
class Solution {
public:
vector<TreeNode*> generateTrees(int n) {
return Helper(1,n);
}
vector<TreeNode *> Helper(int start, int end)
{
vector<TreeNode *> res;
if(start > end)
{
res.push_back(NULL);
return res;
}
for(int k = start; k <= end; k++)
{
vector<TreeNode *> leftList = Helper(start,k-1);
vector<TreeNode *> rightList = Helper(k+1,end);
for(int i = 0; i < leftList.size(); i++)
{
for(int j = 0; j < rightList.size(); j++)
{
TreeNode *root = new TreeNode(k); //每次都要重新create一个根节点,不能放到循环外面
root->left = leftList[i];
root->right = rightList[j];
res.push_back(root);
}
}
}
return res;
}
};