《算法笔记》4.5小节——算法初步->二分

本文探讨了二分查找在有序序列中查找和寻找满足特定条件元素的应用,以及如何通过二分法拓展解决计算根号、装水问题和木棒切割等问题。同时介绍了快速幂算法的递归和迭代实现,并展示了它们在判断奇偶性和数组搜索中的应用。通过实例分析了在不同场景下如何有效利用这些算法提高效率。
摘要由CSDN通过智能技术生成

4.5.1二分法查找
顺序查找->二分查找,时间复杂度从n降到了logn
1.当二分的上界超过Int数据类型的一半,采取mid=left+(right-left)/2来替代表示;
2.二分法可以用递归与非递归两种形式表示
寻找有序序列中是否存在满足某条件的元素
最普通的二分法:

#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
//要从递增的序列A[]中查找元素x,查找成功返回元素下标,查找失败则返回-1
int bSearch(int A[],int left,int right,int x) 
{
	int mid;
	while (left <= right) 
	{
		mid = (left + right) / 2;
		if (A[mid] == x)
			return mid;
		else if (A[mid] > x)
		{
			right = mid - 1;
		}
		else
		{
			left = mid + 1;
		}
	}
	return -1;
}
int main()
{
	const int n = 10;
	int A[n] = { 1,3,4,6,7,8,10,11,12,15 };
	printf("%d %d",bSearch(A,0,n-1,6), bSearch(A, 0, n - 1, 9));//查找元素6和9
	return 0;
}

寻找有序序列中第一个满足某条件的元素的位置
见书上P129代码

4.5.2二分法拓展
计算根号2
等价于求某一函数的在某范围内的根
装水问题
木棒切割问题
💠💠💠线段外接圆问题
认为上面的问中都存在函数关系,所以让可以转换为求满足某一条件的长度、水位高度等等。不断逼近这个结果

4.5.3快速幂
1.快速幂的递归写法以及注意事项
2.快速幂的迭代写法以及注意事项
上面两种写法的效率差不多,值得注意的是在判断一个数是不是奇数的时候可以使用if(b&1)来判断,当b是奇数时if条件判断通过,反之,不通过。

问题 A: 找x
问题描述:输入一个数n,然后输入n个数值各不相同,再输入一个值x,输出这个值在这个数组中的下标(从0开始,若不在数组中则输出-1)。

  • 输入
测试数据有多组,输入n(1<=n<=200),接着输入n个数,然后输入x。
  • 输出
对于每组输入,请输出结果。
  • 样例输入
4
1 2 3 4
3
  • 样例输出
2

一开始报错我以为是元素在数组内可能有多个下标,后来发现是这题没说数列有序,排序之后再输出的下标和原来的下标不一样了,所以用结构体存储了元素的值和下标,好麻烦,还不如暴力搜索。

#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn = 210;
struct AA {
	int yuansu;
	int xiabiao;
}A[maxn];
bool cmp(AA a, AA b)
{
	return a.yuansu < b.yuansu;
}
//要从递增的序列A[]中查找元素x,查找成功返回元素下标,查找失败则返回-1
int bSearch(struct AA A[],int left,int right,int x) 
{
	
	int mid;
	while (left <= right) 
	{
		mid = (left + right) / 2;
		if (A[mid].yuansu == x)
		{
			return A[mid].xiabiao;
		}			
		else if (A[mid].yuansu > x)
		{
			right = mid - 1;
		}
		else
		{
			left = mid + 1;
		}
	}
		return -1;	
}
int main()
{	
	int n;
	int i;
	int x;
	int num;
	while (scanf("%d", &n) != EOF)
	{
		for (i = 0; i < n; i++)
		{
			scanf("%d",&A[i].yuansu);
			A[i].xiabiao = i;
		}
		sort(A,A+n,cmp);
		scanf("%d",&x);
		printf("%d\n",bSearch(A, 0, n - 1, x));//查找元素6和9		
	}	
	return 0;
}

问题B:打印极值点下标
问题描述:
在一个整数数组上,对于下标为i的整数,如果它大于所有它相邻的整数,或者小于所有它相邻的整数,则称为该整数为一个极值点,极值点的下标就是i。

  • 输入
每个案例的输入如下:

有2×n+1行输入:第一行是要处理的数组的个数n;
对其余2×n行,第一行是此数组的元素个数k(4<k<80),第二行是k个整数,每两个整数之间用空格分隔。
  • 输出
每个案例输出不多于n行:每行对应于相应数组的所有极值点下标值,下标值之间用空格分隔,如果没有极值点则不输出任何东西。
  • 样例输入
2
4
1 2 1 3
5
3 4 5 6 7
  • 样例输出
0 1 2 3
0 4

注意可能有多个案例,其他没什么了

#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int main()
{
	int n;
	int i, j;
	int k;
	int a[90];
	int num;
	int flag;
	while (scanf("%d", &n) != EOF)
	{
		for (i = 0; i < n; i++)
		{
			num = 0;
			flag = 0;
			scanf("%d", &k);
			for (j = 0; j < k; j++)
			{
				scanf("%d", &a[j]);
			}
			for (j = 0; j < k; j++)
			{
				if ((j == 0) && (a[j] != a[j + 1]) || (j == k - 1) && (a[j] != a[j - 1]) || (a[j] > a[j - 1]) && (a[j] > a[j + 1]) || (a[j] < a[j - 1]) && (a[j] < a[j + 1]))
				{
					printf("%d", j); flag = 1;
					if (j != k - 1)	printf(" ");
				}
			}
			if (flag == 1)
			{
				printf("\n");
			}
	}	
	
	}

	return 0;
}

问题C:查找
问题描述:输入数组长度 n
输入数组 a[1…n]
输入查找个数m
输入查找数字b[1…m]
输出 YES or NO 查找有则YES 否则NO 。

  • 输入
输入有多组数据。
每组输入n,然后输入n个整数,再输入m,然后再输入m个整数(1<=m<=n<=100)。
  • 输出
如果在n个数组中输出YES否则输出NO。
  • 样例输入
6
3 2 5 4 7 8
2
3 6
  • 样例输出
YES
NO

典型的二分法

#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
//要从递增的序列A[]中查找元素x,查找成功返回元素下标,查找失败则返回-1
int bSearch(int A[], int left, int right, int x)
{
	int mid;
	while (left <= right)
	{
		mid = (left + right) / 2;
		if (A[mid] == x)
		{
			return 1;
		}			
		else if (A[mid] > x)
		{
			right = mid - 1;
		}
		else
		{
			left = mid + 1;
		}
	}
	return 0;
}
int main()
{
	int n ;
	int i;
	int m;
	int A[100] = {0};
	int B[100] = { 0 };
	while (scanf("%d", &n) != EOF)
	{
		for (i = 0; i < n; i++)
		{
			scanf("%d",&A[i]);
		}
		sort(A, A + n);
		scanf("%d",&m);
		for (i = 0; i < m; i++)
		{
			scanf("%d", &B[i]);
			if (bSearch(A, 0, n - 1, B[i]))
				printf("YES\n");
			else
				printf("NO\n");
		}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值