高精度模版
-
为什么需要高精度?
因为无论是
int
还是long long
能存储的位数都是有限制的。当面对特别大的数时候就会出溢出情况。因此我们需要一种方法去存放任意长度的数字。数组就是我们解决问题的关键。 -
高精度的实现
一般有
string
、或int[]
(int 型数组)。在用int[]
的时候我们可以实现压位操作,把4个数字甚至8个数字放到一个int里,这样可以增加我们的存贮效率
高精度加法
-
传入参数均为string类型,返回值为string类型
-
算法思想:倒置相加再还原。
-
算法复杂度:o(n)
string add(string a,string b)//只限两个非负整数相加
{
const int L=1e5;
string ans;
int na[L]={0},nb[L]={0};
int la=a.size(),lb=b.size();
for(int i=0;i<la;i++) na[la-1-i]=a[i]-'0';
for(int i=0;i<lb;i++) nb[lb-1-i]=b[i]-'0';
int lmax=la>lb?la:lb;
for(int i=0;i<lmax;i++) na[i]+=nb[i],na[i+1]+=na[i]/10,na[i]%=10;
if(na[lmax]) lmax++;
for(int i=lmax-1;i>=0;i--) ans+=na[i]+'0';
return ans;
}
2.高精度减法
-
传入参数均为string类型,返回值为string类型
-
算法思想:倒置相减再还原。
-
算法复杂度:o(n)
string sub(string a,string b)//只限大的非负整数减小的非负整数
{
const int L=1e5;
string ans;
int na[L]={0},nb[L]={0};
int la=a.size(),lb=b.size();
for(int i=0;i<la;i++) na[la-1-i]=a[i]-'0';
for(int i=0;i<lb;i++) nb[lb-1-i]=b[i]-'0';
int lmax=la>lb?la:lb;
for(int i=0;i<lmax;i++)
{
na[i]-=nb[i];
if(na[i]<0) na[i]+=10,na[i+1]--;
}
while(!na[--lmax]&&lmax>0) ;lmax++;
for(int i=lmax-1;i>=0;i--) ans+=na[i]+'0';
return ans;
}
高精度乘法
-
传入参数均为string类型,返回值为string类型
-
算法思想:倒置相乘,然后统一处理进位,再还原。
-
算法复杂度:o(n^2)
还可以用fft来优化时间复杂度O(nlogn)
string mul(string a,string b)//高精度乘法a,b,均为非负整数
{
const int L=1e5;
string s;
int na[L],nb[L],nc[L],La=a.size(),Lb=b.size();//na存储被乘数,nb存储乘数,nc存储积
fill(na,na+L,0);fill(nb,nb+L,0);fill(nc,nc+L,0);//将na,nb,nc都置为0
for(int i=La-1;i>=0;i--) na[La-i]=a[i]-'0';//将字符串表示的大整形数转成i整形数组表示的大整形数
for(int i=Lb-1;i>=0;i--) nb[Lb-i]=b[i]-'0';
for(int i=1;i<=La;i++)
for(int j=1;j<=Lb;j++)
nc[i+j-1]+=na[i]*nb[j];//a的第i位乘以b的第j位为积的第i+j-1位(先不考虑进位)
for(int i=1;i<=La+Lb;i++)
nc[i+1]+=nc[i]/10,nc[i]%=10;//统一处理进位
if(nc[La+Lb]) s+=nc[La+Lb]+'0';//判断第i+j位上的数字是不是0
for(int i=La+Lb-1;i>=1;i--)
s+=nc[i]+'0';//将整形数组转成字符串
return s;
}
写给大哥的。