大数算法

高精度模版

  • 为什么需要高精度?

    因为无论是int 还是long long 能存储的位数都是有限制的。当面对特别大的数时候就会出溢出情况。因此我们需要一种方法去存放任意长度的数字。数组就是我们解决问题的关键。

  • 高精度的实现

    一般有string、或int[](int 型数组)。在用int[]的时候我们可以实现压位操作,把4个数字甚至8个数字放到一个int里,这样可以增加我们的存贮效率

高精度加法

  • 传入参数均为string类型,返回值为string类型

  • 算法思想:倒置相加再还原。

  • 算法复杂度:o(n)

string add(string a,string b)//只限两个非负整数相加
{
    const int L=1e5;
    string ans;
    int na[L]={0},nb[L]={0};
    int la=a.size(),lb=b.size();
    for(int i=0;i<la;i++) na[la-1-i]=a[i]-'0';
    for(int i=0;i<lb;i++) nb[lb-1-i]=b[i]-'0';
    int lmax=la>lb?la:lb;
    for(int i=0;i<lmax;i++) na[i]+=nb[i],na[i+1]+=na[i]/10,na[i]%=10;
    if(na[lmax]) lmax++;
    for(int i=lmax-1;i>=0;i--) ans+=na[i]+'0';
    return ans;
}

2.高精度减法

  • 传入参数均为string类型,返回值为string类型

  • 算法思想:倒置相减再还原。

  • 算法复杂度:o(n)

string sub(string a,string b)//只限大的非负整数减小的非负整数
{
    const int L=1e5;
    string ans;
    int na[L]={0},nb[L]={0};
    int la=a.size(),lb=b.size();
    for(int i=0;i<la;i++) na[la-1-i]=a[i]-'0';
    for(int i=0;i<lb;i++) nb[lb-1-i]=b[i]-'0';
    int lmax=la>lb?la:lb;
    for(int i=0;i<lmax;i++)
    {
        na[i]-=nb[i];
        if(na[i]<0) na[i]+=10,na[i+1]--;
    }
    while(!na[--lmax]&&lmax>0)  ;lmax++;
    for(int i=lmax-1;i>=0;i--) ans+=na[i]+'0';
    return ans;
}

高精度乘法

  • 传入参数均为string类型,返回值为string类型

  • 算法思想:倒置相乘,然后统一处理进位,再还原。

  • 算法复杂度:o(n^2)

    还可以用fft来优化时间复杂度O(nlogn)

string mul(string a,string b)//高精度乘法a,b,均为非负整数
{
    const int L=1e5;
    string s;
    int na[L],nb[L],nc[L],La=a.size(),Lb=b.size();//na存储被乘数,nb存储乘数,nc存储积
    fill(na,na+L,0);fill(nb,nb+L,0);fill(nc,nc+L,0);//将na,nb,nc都置为0
    for(int i=La-1;i>=0;i--) na[La-i]=a[i]-'0';//将字符串表示的大整形数转成i整形数组表示的大整形数
    for(int i=Lb-1;i>=0;i--) nb[Lb-i]=b[i]-'0';
    for(int i=1;i<=La;i++)
        for(int j=1;j<=Lb;j++)
        nc[i+j-1]+=na[i]*nb[j];//a的第i位乘以b的第j位为积的第i+j-1位(先不考虑进位)
    for(int i=1;i<=La+Lb;i++)
        nc[i+1]+=nc[i]/10,nc[i]%=10;//统一处理进位
    if(nc[La+Lb]) s+=nc[La+Lb]+'0';//判断第i+j位上的数字是不是0
    for(int i=La+Lb-1;i>=1;i--)
        s+=nc[i]+'0';//将整形数组转成字符串
    return s;
}

写给大哥的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值