线性代数
Luckie stone
Android应用开发。
展开
-
转置-置换-向量空间R
首先是置换(Permutation),前面的A=LU分解中消元都是假设没有行交换,但是有时为了防止主元为0,行交换总是不可避免的,所以如果存在行交换,那么上一篇中的A=LU就变成了PA=LU(A是可逆阵)。对于n*n的矩阵,其所有可能的置换阵个数为n!(包括置换其中2行,3行…n行),而且所有这些置换阵都是可逆阵,因为各行还原后就可以得到单位阵,而且其逆矩阵与其转置相等,所以这是一类不常见但很重要...转载 2019-05-19 07:01:18 · 997 阅读 · 0 评论 -
对角化和A 的幂
给定矩阵A,假设A有n个线性无关特征向量,按列组成矩阵S,所以这个S很自然地称为特征向量矩阵,并且其中 称为特征值矩阵,由于S中是n个线性无关特征向量,因此S可逆,所以可对上式两边同时左乘S的逆,得到 ,如果右乘S的逆,则有 ,这是一种新的矩阵分解形式,前面在消元法中曾经介绍过LU分解,这是与LU分解等价的另一种分解。前面的文章中我们曾经推导过的特征值和特征向量,即 ,结论...转载 2019-05-21 06:56:15 · 1648 阅读 · 0 评论 -
复数矩阵和快速傅里叶变换
有时实矩阵会有复数的特征值,当特征值变成复数时,特征向量也会变成复数,傅里叶矩阵是复矩阵里最重要的例子。先来讨论一般的复向量和复矩阵,如果给定复向量 , 则其不再属于,而属于n维复空间,z中每个元素都是复数,此时在实数空间中定义的向量求模方法:乘z将不再适用,因为模长的平方应该始终是正数,在复数空间,z的模长平方应该等于z1的共轭乘以z1加上z2的共轭乘以z2一直加到zn的共轭乘以zn,即z的模长...转载 2019-05-21 06:56:25 · 3020 阅读 · 0 评论 -
方程组的几何解释
对于如下方程组:2x-y=0-x+2y=3我们熟知的矩阵形式Ax=b为1、从行的角度来看方程(row picture)则一次取一行,作图于xy平面,这是我们对方程组熟悉的理解方式,交点即为方程解2、从列的角度看待方程(column picture)则方程组变成形式,即求解怎样将向量和向量进行组合得到向量从列的角度去理解方程组的求解是很重要的!!这...转载 2019-05-11 21:20:09 · 250 阅读 · 0 评论 -
矩阵消元
矩阵消元法(Elimination)是常用的方程组Ax=b求解方法,但是该如何利用矩阵变换的思想来理解消元法呢?假设有方程组对于上述方程组,系数矩阵A为整个消元过程为在用矩阵变换的思想理解矩阵消元之前,关于矩阵乘法的理解很重要,矩阵乘法可以从行的角度理解,列的角度理解,也可从矩阵单个元素的角度理解(这是我们通常的理解)。如果从行的角度,则相乘是矩阵行的线性组合,为了方便书写...转载 2019-05-12 08:23:23 · 1794 阅读 · 0 评论 -
乘法和逆矩阵
前面已经介绍过矩阵相乘的常规方法,行方法,列方法,以A*B=C为例,常规方法即为A行与B列对应元素相乘相加得到C中对应的元素,行方法即用A中每行指定的线性组合方法对B中所有行进行线性组合得到C中的每行,列方法即用B中每列指定的线性组合方法对A中所有列进行组合得到C中的每列,现在介绍矩阵相乘的第4种方法,即如果用A列乘以B行如何实现矩阵相乘,如另外对于矩阵相乘,我们还可以先将矩阵分块,然后对...转载 2019-05-12 09:37:45 · 2116 阅读 · 0 评论 -
A的LU分解
前面我们曾经通过高斯消元将矩阵A最终转化成了上三角阵U,那么今天我们就继续深入探索A和U之间到底有什么样的联系。在开始之前,先交代一些需用到的基础理论。假设A是可逆阵,则有,两边同时转置,根据乘积的转置等于各自转置的反顺序相乘,则有,这个式子表示A转置的逆等于A的逆的转置,也就是说,对单个矩阵而言,转置和求逆可以任意颠倒次序。假设矩阵A= ,现在用初等矩阵E21对其消元,从而...转载 2019-05-12 09:53:15 · 2558 阅读 · 0 评论 -
相似矩阵和若尔当形
相似矩阵的定义:A和B都是n*n矩阵,若存在某个可逆矩阵M使得,则A和B是相似矩阵。在http://blog.csdn.net/xdfyoga1/article/details/37996291中曾经介绍过矩阵A可对角化为的形式(只有当A存在n个无关特征向量时才可对角化),假设现在A有n个无关的特征向量,也就是存在特征向量矩阵S,则对上面的对角化形式变形可得 ,根据矩阵相似性的定义可知矩阵A相似于...转载 2019-05-26 16:18:50 · 5102 阅读 · 0 评论 -
奇异值分解
奇异值分解(SVD, singular value decomposition)是对矩阵最好的分解形式(前面介绍过矩阵的LU分解,对角化分解),它将某个矩阵A分解为正交矩阵(orthogonal matrix),对角矩阵(diagonal matrix)和正交矩阵相乘的形式,A可以是任意类型的矩阵,即任意矩阵都可进行这种奇异值分解。以前曾介绍过矩阵的对角化分解形式为,对于正定矩阵,由于一定满足对称...转载 2019-05-26 16:19:40 · 1880 阅读 · 0 评论 -
线性变换及其对应的矩阵
变换有很多种形式,它描述了输入和输出间的映射(mapping/map)关系,这篇文章主要讨论线性变换,每个线性变换都对应一个矩阵,线性变换与坐标无关,而矩阵与坐标有关,因此矩阵是基于坐标来描述线性变换,例如投影就是一种常见的线性变换,与其对应的是投影矩阵,判断是线性变换需满足以下两个条件:其中v和w分别是向量,T表示对向量的变换,上两式表明线性变换应该保证加法和乘法的不变性,这两个条件可合并为...转载 2019-05-26 16:20:37 · 8713 阅读 · 0 评论 -
基变换和图像压缩
实际应用中经常会碰到从一组基变换到另一组基的情况,例如压缩(compressing),压缩的本质就是基变换,例如对一副512*512的静态图像(still image)进行压缩,图像原本采用的基是标准基,在标准基下每个像素一个灰度值。正因为相邻像素间相互关联,使得对图像压缩变成可能。将图像看成是一个长度的向量x,在压缩中常用的一个很好的基向量就是所有元素都为1的向量 ,当整幅图像比较平滑,各处都...转载 2019-05-26 16:21:28 · 524 阅读 · 0 评论 -
左右逆和伪逆
通常我们所说的逆都是放在矩阵左右两边都能成立的逆,即 ,左逆等于右逆,如果A是m*n大小的矩阵,其秩为r,则存在上述的逆需满足条件m=n=r,也就是A为方阵并且满秩(full rank)。如果A不是满秩,而只是列满秩(fullcolumn rank),则A只存在左逆(left-inverse),列满秩说明r=n<m,也就是说列向量是无关的,而行向量不是,根据求解Ax=0:主变量、自由变量、特...转载 2019-05-26 16:22:16 · 4203 阅读 · 0 评论 -
线性变换
原创 2019-09-01 12:42:07 · 229 阅读 · 0 评论 -
对称矩阵及正定性
对称阵是非常重要的矩阵,对于实对称矩阵,其特征值也为实数,且特征向量是垂直的。注意这里的垂直是指:如果特征值互不相同,那么每个特征值对应的特征向量是在一条线上,那些线之间总是垂直的;如果特征值重复,那特征值就对应一整个平面的特征向量,这是因为 ,则 ,在那个平面上,我们总可以选到垂直的向量。比如对于单位阵,它是对称阵,单位阵只有一个特征值即为1,每个向量都是其特征向量,在这些特征向量组成的平面上,...转载 2019-05-21 06:56:09 · 10841 阅读 · 0 评论 -
特征值和特征向量
特征值(eigenvalues)和特征向量(eigenvectors)都是对方阵而言的,给定矩阵A,它就像某个函数一样作用在向量x上,从而得到新向量Ax,我们感兴趣的是矩阵作用后那些新向量Ax与原向量x方向一致的向量,对多数向量而言,Ax是不同方向的,但有些特殊向量被矩阵作用后是跟x平行的,用式子来表示就是为特征值,x为A的特征向量,所谓方向相同可表示方向相同,也可表示方向相反, 允许取负值或0...转载 2019-05-21 06:56:02 · 1091 阅读 · 0 评论 -
克拉默法则、逆矩阵、体积
这一篇主要介绍行列式的3个应用:求逆矩阵、方程求解、计算面积和体积。应用1:求逆矩阵首先直接给出求逆公式是A的代数余子式矩阵(matrix of cofactors), ,其中C11为元素a11的代数余子式,以此类推。那么要证明上面的逆公式成立,即要证明 成立,将此公式展开成下式后我们知道 确实是成立的。因为对于对角线元素,它们分别等于这些加起来都等于detA,至于非对角线元...转载 2019-05-21 06:55:56 · 1106 阅读 · 0 评论 -
列空间(column space)和零空间(null space)
上一篇中简单介绍了向量空间(vector space)和子空间(subspace),也知道了R3有4个子空间:R3本身,过原点的平面,过原点的直线以及单独的零向量。现假设过原点的面为P,过原点的直线为L,L不在P上,那么容易理解L和P的并集(union)并不是R3的子空间,因为如果我分别取L和P中的向量进行相加,得到的结果就不在平面或直线上了,这个结论可推至一般,即某向量空间的两个子空间的并集不是...转载 2019-05-19 07:08:43 · 12006 阅读 · 0 评论 -
求解Ax=0:主变量、自由变量、特殊解
上一篇简单介绍了列空间(column space)和零空间(null space),这一次主要介绍如何求出零空间内的向量,即主要讨论Ax=0。假设有矩阵A=,略微观察一下其行和列可看出,列2是列1的倍数,行3等于行1加行2,他们都是相关的,这些相关性会在消元中体现出来。当我们对A进行消元,在消元的过程中,解是不会变的,因此零空间不会变化,但列空间会随着消元发生改变,对A的消元过程如下,最终得到矩阵...转载 2019-05-19 07:26:17 · 7738 阅读 · 0 评论 -
求解Ax=b:可解性和解的结构
对于Ax=b,我们都已经知道如何用消元法去求它的解,假设现有系数矩阵A和常量项b,则方程求解过程为前面我们已经讨论过b需要满足什么样的条件才能使方程有解?即当b属于A的列空间C(A)时方程是可解的(solvability),除了用列空间的思想,这里还可用另一种方式描述方程的可解性:如果A的某行由于消元变成了0行,即全是0,那么对应b中的值运算后也应该得到0,如果不是0,则这样的b是肯定无法用A...转载 2019-05-19 07:30:11 · 3976 阅读 · 0 评论 -
线性相关性、基、维数
首先在定义这几个名词之前,我们要知道这几个词:线性相关(linear independence)、基(basis)、维数(dimension)是争对什么量的,比如我们只会说一组向量(a bunch of vectors)线性无关或线性相关,不会说矩阵线性无关,矩阵我们只说秩,行列式等,我们会说某组向量可以作为某空间的基,不会说某个矩阵是基,另外这里讨论的维数并不是矩阵的维数,而是空间的维数。线...转载 2019-05-19 07:39:35 · 1410 阅读 · 0 评论 -
4个基本子空间
前面我们已经介绍过矩阵的两个重要空间:列空间和零空间,今天继续介绍矩阵的另外两个重要空间:行空间和左零空间。A的行空间就是的列空间,A的左零空间就是的零空间,文字描述起来比较拗口,用数学符号表示一下就会简单明了:对于矩阵A,其列空间是C(A),零空间N(A),行空间是C(),左零空间是N()。注意,虽然今天新增的这两个空间涉及 ,但我们还是从A的角度去看待这两个子空间。4个子空间的维数分别是多...转载 2019-05-19 07:51:18 · 1238 阅读 · 0 评论 -
矩阵空间、秩1矩阵
今天要介绍一种新的向量空间,即矩阵空间,之前碰到的所有向量空间,都是n维的实数空间,现在我们将矩阵当成向量,比如说将3*3的矩阵看作向量,这相当于从原来的n维为扩展到n*n维,那么明明是矩阵为什么可以看成是向量呢?因为矩阵也服从向量空间的运算,向量能相加,矩阵也能相加,向量能数乘,矩阵也可以数乘,向量可以线性组合,矩阵也可以线性组合。所以说矩阵也可以当成向量来生成空间,这个空间就是矩阵空间。比如说...转载 2019-05-19 07:57:33 · 1271 阅读 · 0 评论 -
正交向量与子空间
关于向量正交(orthogonality vector)我们都已不陌生,正交是垂直的另一种说法,两个向量正交意味着这两个向量的夹角为90度,如果要判断两个向量是否正交,只需对向量作点乘(dot product)相加,即内积,等于0就是正交的,如,则x和y是正交的,如果x是零向量,y任意或者y是零向量,x任意,那么这两个向量是正交的,即零向量与任何向量都正交。将正交从向量推广到子空间,定义子空间...转载 2019-05-19 10:43:15 · 790 阅读 · 0 评论 -
子空间投影
首先我们可以通过上图了解投影在二维空间R2中是怎么回事,现有向量a和b,将b向量投影到a向量,p为b在a上的投影,即p是a上离b最近的点,e=b-p这好比b与p之间的误差,这个误差与a相互垂直,根据垂直关系我们可以列出方程,投影p是a的倍数,所以p=xa,这个x是一个标量,a垂直于e,也就是说 ,将式子作一些变形得到,则,投影 ,从投影p的式子可以看出,若b变成了两倍,投影p也会变成2倍,若a...转载 2019-05-19 10:59:54 · 649 阅读 · 0 评论 -
投影矩阵和最小二乘
前面一篇文章中我们得出投影矩阵,它能产生投影,现在我们来看两种极端情况,第一种就是b就在列空间里,那么在上一篇文章中已经给出投影矩阵为I,即相当于不做任何投影;第二种极端情况就是b垂直于列空间,此时Pb=0,一般情况下向量会有一分量在列空间里,另一分量与列空间垂直,因此投影完成的功能就是去掉垂直部分,保留另一部分。那么这个公式是如何起到这种作用的呢?假设向量b1垂直于列空间,则b垂直于列空间的所...转载 2019-05-19 11:04:32 · 321 阅读 · 0 评论 -
正交矩阵和Gram-Schmidt正交化
今天我们学习一下正交向量(orthogonal vector)和正交矩阵(orthogonal matrix)。设有一组向量q1,q2…qn,如果任意的q都与其他的q正交,且每个q向量长度都为1,那么这组向量就是正交向量,用数学式子来表达就是:注意准确说这组向量应该是标准正交向量(orthonormal vector),因为每个q向量长度都为1,即经过归一化的(normalization),但...转载 2019-05-21 06:55:25 · 2272 阅读 · 0 评论 -
行列式及其性质
行列式(determinant)是方阵的一个重要特征,常记作detA或者|A|,其包含了矩阵的很多重要信息。行列式为0,则矩阵不可逆,否则矩阵可逆,所以行列式可用来检验矩阵的可逆性。这篇文章主要介绍行列式的10个性质。性质1:单位矩阵的行列式为1性质2:如果交换矩阵的两行,则行列式的符号要取反。从这个性质我们可得出置换矩阵的行列式总是为1或-1,这取决于行交换的次数,行交换奇数次则为-1,...转载 2019-05-21 06:55:35 · 8086 阅读 · 0 评论 -
行列式公式和代数余子式
前一篇介绍了行列式(determinant)的10个性质,且简单阐述了如何用消元法求行列式。今天简单介绍求解行列式的2个一般公式,先看第一个公式,以最简单的2*2矩阵为例,对行列式的求法如下:整个求解思想就是尽量将矩阵化为对角矩阵,每次取一行,逐渐化简矩阵,在化简过程中,有很多矩阵出现零行或零列,行列式变为0,我们用上述方法对3*3矩阵计算行列式,去掉那些行列式为0的项,得到从上面...转载 2019-05-21 06:55:43 · 9974 阅读 · 0 评论 -
向量点乘(内积)和叉乘(外积、向量积)概念及几何意义解读
向量是由n个实数组成的一个n行1列(n*1)或一个1行n列(1*n)的有序数组;向量的点乘,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。点乘公式对于向量a和向量b: a和b的点积公式为:...原创 2019-09-08 07:03:45 · 894 阅读 · 0 评论