pytorch 笔记

本文详细介绍了PyTorch中张量的两种相乘方式:点乘(矩阵相乘),用于将m x n矩阵与n x d矩阵相乘得到m x d矩阵;以及对应元素相乘(Hadamard product),要求张量维度一致。
摘要由CSDN通过智能技术生成

两张量相乘

点乘 (矩阵相乘)tensor1.mm(tensor2)

m x n 矩阵 乘以 n x d 得到 m x d 矩阵

data = [[1,2], [3,4], [5, 6]]
tensor = torch.FloatTensor(data)

tensor
Out[31]: 
tensor([[ 1.,  2.],
        [ 3.,  4.],
        [ 5.,  6.]])
 
tensor.mm(tensor.t())  # t()是转置
Out[30]: 
tensor([[  5.,  11.,  17.],
        [ 11.,  25.,  39.],
        [ 17.,  39.,  61.]])

对应元素相乘 (Hadamard product)tensor1.mul(tensor2)

必须保证量张量的维度一致

data = [[1,2], [3,4], [5, 6]]
tensor = torch.FloatTensor(data)
 
tensor
Out[27]: 
tensor([[ 1.,  2.],
        [ 3.,  4.],
        [ 5.,  6.]])
 
tensor.mul(tensor)
Out[28]: 
tensor([[  1.,   4.],
        [  9.,  16.],
        [ 25.,  36.]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值