pytorch教程(1.5)——梯度自动计算

摘要

在训练神经网络时,最常用的算法是反向传播。 在该算法中,参数(模型权重)根据损失函数相对于给定参数的梯度进行调整。
为了计算这些梯度,PyTorch 有一个名为 torch.autograd 的内置微分引擎。 它支持任何计算图的梯度自动计算。
考虑最简单的一层神经网络,输入 x,参数 w 和 b,以及一些损失函数。 它可以通过以下方式在 PyTorch 中定义:

import torch

x = torch.ones(5)  # input tensor
y = torch.zeros(3)  # expected output
w = torch.randn(5, 3, requires_grad=True)
b = torch.randn(3, requires_grad=True)
z = torch.matmul(x, w)+b
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)

张量、函数和计算图

此代码定义了以下计算图:
在这里插入图片描述
在这个网络中,w 和 b 是我们需要优化的参数。 因此,我们需要能够计算关于这些变量的损失函数的梯度。 为了做到这一点,我们设置了这些张量的 requires_grad 属性。

您可以在创建张量时或稍后使用 x.requires_grad_(True) 方法设置 requires_grad 的值。

我们应用于张量来构建计算图的函数实际上是类 Function 的对象。 该对象知道如何在前向计算函数,以及如何在反向传播步骤中计算其导数。 对反向传播函数的引用存储在张量的 grad_fn 属性中。 您可以在文档中找到有关 Function 的更多信息。

print('Gradient function for z =', z.grad_fn)
print('Gradient function for loss =', loss.grad_fn)

在这里插入图片描述

计算梯度

为了优化神经网络中参数的权重,我们需要计算损失函数关于参数的导数,即我们需要 ∂ l o s s ∂ w \frac{\partial loss}{\partial w} wloss ∂ l o s s ∂ b \frac{\partial loss}{\partial b} bloss 在一些固定的 x 和 y 值下。 为了计算这些导数,我们调用 loss.backward(),然后从 w.grad 和 b.grad 中检索值:

loss.backward() 
print(w.grad) 
print(b.grad)

在这里插入图片描述

我们只能获取计算图的叶节点的 grad 属性,这些节点的 requires_grad 属性设置为 True。 对于我们图中的所有其他节点,渐变将不可用。
出于性能原因,我们只能在给定的图上使用向后一次执行梯度计算。 如果我们需要在同一个图上进行多次反向调用,我们需要将 retain_graph=True 传递给反向调用。

禁用梯度跟踪

默认情况下,所有具有 requires_grad=True 的张量都在跟踪它们的计算历史并支持梯度计算。 但是,在某些情况下我们不需要这样做,例如,当我们训练了模型并且只想将其应用于某些输入数据时,即我们只想通过网络进行前向计算。 我们可以通过用 torch.no_grad() 块包围我们的计算代码来停止跟踪计算:

z = torch.matmul(x, w)+b
print(z.requires_grad)

with torch.no_grad():
    z = torch.matmul(x, w)+b
print(z.requires_grad)

在这里插入图片描述

获得相同结果的另一种方法是在张量上使用 detach() 方法:

z = torch.matmul(x, w)+b 
z_det = z.detach() 
print(z_det.requires_grad)

在这里插入图片描述
您可能想要禁用梯度跟踪的原因有:
将神经网络中的某些参数标记为冻结参数。 这是微调预训练网络的一个非常常见的场景,当您只进行前向传递时,可以加快计算速度,因为对不跟踪梯度的张量进行计算会更有效。

更多关于计算图

从概念上讲,autograd 在由 Function 对象组成的有向无环图 (DAG) 中保存数据(张量)和所有已执行操作(以及生成的新张量)的记录。 在这个 DAG 中,叶子是输入张量,根是输出张量。 通过从根到叶跟踪此图,您可以使用链式法则自动计算梯度。
在前向传递中,autograd 同时做两件事:运行请求的操作来计算结果张量在 DAG 中维护操作的梯度函数。
当在 DAG 根上调用 .backward() 时,反向传递开始。 autograd 然后:计算每个 .grad_fn 的梯度,使用链式法则将它们累积在相应张量的 .grad 属性中,一直传播到叶张量。

PyTorch 中的 DAG 是动态的 需要注意的重要一点是,该图是从头开始重新创建的; 在每次 .backward() 调用之后,autograd 开始填充一个新图形。 这正是允许您在模型中使用控制流语句的原因; 如果需要,您可以在每次迭代时更改形状、大小和操作。

选读:张量梯度和雅可比积

在很多情况下,我们有一个标量损失函数,我们需要计算一些参数的梯度。 但是,有些情况下输出函数是任意张量。 在这种情况下,PyTorch 允许您计算所谓的雅可比积,而不是实际的梯度。
对于向量函数 y ⃗ = f ( x ⃗ ) \vec{y}=f(\vec{x}) y =f(x ) ,其中 x ⃗ = ⟨ x 1 , … , x n ⟩ \vec{x}=\langle x_1,\dots,x_n\rangle x =x1,,xn y ⃗ = ⟨ y 1 , … , y m ⟩ \vec{y}=\langle y_1,\dots,y_m\rangle y =y1,,ym, y 关于\的梯度 x ⃗ \vec{x} x 由雅可比矩阵给出:
在这里插入图片描述
PyTorch 允许您为给定的输入向量 v = ( v 1 … v m ) ⋅ J v=(v_1 \dots v_m) \cdot J v=(v1vm)J计算雅可比矩阵本身,而不是计算雅可比矩阵本身。 这是通过使用 v 作为参数调用backward来实现的。 v 的大小应该与原始张量的大小相同,我们要计算其乘积:

inp = torch.eye(5, requires_grad=True)
out = (inp+1).pow(2)
out.backward(torch.ones_like(inp), retain_graph=True)
print("First call\n", inp.grad)
out.backward(torch.ones_like(inp), retain_graph=True)
print("\nSecond call\n", inp.grad)
inp.grad.zero_()
out.backward(torch.ones_like(inp), retain_graph=True)
print("\nCall after zeroing gradients\n", inp.grad)

在这里插入图片描述

请注意,当我们使用相同的参数第二次向后调用时,梯度的值是不同的。 发生这种情况是因为在进行反向传播时,PyTorch 会累积梯度,即将计算梯度的值添加到计算图所有叶节点的 grad 属性中。 如果要计算适当的梯度,则需要先将 grad 属性归零。 在现实生活中的训练中,优化器可以帮助我们做到这一点。

以前我们调用没有参数的backward() 函数。 这本质上相当于调用backward(torch.tensor(1.0)),这是在标量值函数(例如神经网络训练期间的损失)的情况下计算梯度的有用方法。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

leetteel

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值