zlSpuerr
码龄9年
关注
提问 私信
  • 博客:6,122
    6,122
    总访问量
  • 14
    原创
  • 1,570,037
    排名
  • 3
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2016-04-07
博客简介:

suzelong0402的博客

查看详细资料
个人成就
  • 获得1次点赞
  • 内容获得0次评论
  • 获得12次收藏
创作历程
  • 1篇
    2021年
  • 13篇
    2020年
成就勋章
TA的专栏
  • Golang
    1篇
  • gin
    1篇
  • Java Learning
    6篇
  • 开发
    5篇
  • Leetcode
    1篇
  • pytorch
    2篇
  • 小样本学习
    1篇
  • 眼底图像处理
    2篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【Golang】关于gin框架session的一个小坑

在用gin写web项目的时候用到了session来鉴权,一开始写的代码如下在往session中设置了key-value后尝试get了一下看是否设置成功,结果是可以从session中get到,然而在跨路由get的时候却怎么也get不到,查看网页控制台发现在往session中set完kv后正常情况下应该设置一个名为mysession的cookie在浏览器中,但此时却没有向往常一样在response时带上这个cookie,多次尝试后发现是value的类型为time.Time的原因,具体的原因不了解,但将代码改
原创
发布博客 2021.02.21 ·
1347 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

开发学习笔记-Redis

redis中的操作命令1.redis中有关key的操作命令查看数据库中所有的key:keys [pattern]匹配0次或任意次字符?匹配1次字符[]匹配[]中的一个字符keys * 查看数据库中所有的keykeys k 查看数据库中所有以k开头的keykeys k*s 查看数据库中所有以k开头,s结尾的keykeys k[eds]s 查看数据库中所有以k开头,s结尾,中间为[]中任意一个字符的key判断key是否在数据库中存在: e
原创
发布博客 2020.12.16 ·
175 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

开发学习笔记-Nginx

Nginx学习笔记Nginx是一款免费开源的高性能 HTTP 代理服务器及反向代理服务器(Reverse Proxy)产品,同时它还可以提供 IMAP/POP3 邮件代理服务等功能。它高并发性能很好,官方测试能够支撑 5 万的并发量;运行时内存和 CPU 占用率低,配置简单,容易上手,而且运行非常稳定Nginx常用功能1.反向代理客户端向服务器发送请求时,会首先经过Nginx服务器,由Nginx服务器将请求分发到响应的web服务器。可以采用不同的分发策略。反向代理体现在Nginx是对服务器的代
原创
发布博客 2020.12.16 ·
141 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

开发学习笔记-GC

GC学习笔记Garbage Collection1.GC介绍程序运行的内存空间是有限的,需要在运行时及时的将不使用的内存空间清理释放出来,即Garbage Collection需要GC的内存区域有:java堆内存和方法区内存,主要针对无用堆实例对象的回收,常量池的回收和类型的卸载(程序计数器,虚拟机栈,本地方法栈都随着线程而生随线程而灭,栈中数据随着方法的进入和退出而自动清理)触发GC:1.程序调用System.gc2.系统自身来决定GC触发的时机(根据Eden区和From Space区的内存
原创
发布博客 2020.12.16 ·
132 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

开发学习笔记-计算机网络

计算机网络学习笔记1.网络传输模型层次结构https://www.cnblogs.com/dadadechengzi/p/7999371.html用户层直接向用户提供服务,负责提供一些登陆验证、ip地址分析、数据加密解密、压缩和解压缩、数据编码等服务,将数据向下传送给传输层传输给目标进程传输层(进程-进程 逻辑传输)接收用户层传来的数据,并划分为一个个数据段,向下传送给网络层。对于用户层而言,传输层屏蔽了下面的层次信息,提供透明的传输服务,用户层认为数据是通过传输层直接传送到目标进程的。网络
原创
发布博客 2020.12.16 ·
186 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【Leetcode 310】 Minimum Height Trees

Question:A tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.Given a tree of n nodes labelled from 0 to n - 1, and an array of n - 1 edges where ed
原创
发布博客 2020.10.14 ·
96 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[Java Learning Notes] Notes about Containers

array: 数组不能扩展 按下标访问T array = new T[]; T: [int char string …]Collection: 容器类List: 接口-List.add() 添加一个元素,默认尾部添加,可指定位置添加-List.addAll() 添加一组元素,默认尾部添加,可指定位置添加-List.remove(index/element) 通过index/element移除元素-List.removeAll(list) 移除list
原创
发布博客 2020.07.08 ·
200 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CrossEntropy Loss 学习记录

一直对CrossEntropy Loss的概念比较模糊,今天看了一下,终于理解,记录一下防止忘记!首先要明白交叉熵的概念交叉熵主要是用来判定实际的输出与期望的输出的接近程度,交叉熵越小则表明模型的不确定性越小,模型越稳定。原版交叉熵函数为其中p为期望输出(label),q为实际输出。而在训练模型时用到的损失函数为其中去掉了原版函数的后半部分,因为模型所需要的是实际输出与期望输出越接近越好。如果加上后半部分,即使期望输出与实际输出完全不同,也会得到一个很小的H(p,q)值,那么会对模型起一个误
原创
发布博客 2020.06.18 ·
365 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

小样本学习 few-shot learning

小样本学习在现实世界中,人可以通过很少量的示例就很好很快的接受一个新的事物,比如,看过一两张北极熊的照片,人们就可以很轻易的从黑熊、棕熊、北极熊、熊猫中找到哪一种动物是北极熊。这是因为随着岁月的积累,人们已经拥有了大量的先验知识(prior knowledge),使得对一个新鲜事物,只需要少量的例子就可以“学习”到该事物的特点。机器学习、人工智能的目标就是模仿人的行为,现如今在CV领域,利用CNN等深度学习方法来进行图片分类已经在很多领域达到甚至超越了人类专家的水平,然而这些成果的获得都需要海量的数据集
原创
发布博客 2020.06.17 ·
549 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Two-Stream CNN with Loose Pair Training for Multi-modal AMD Categorization

Two-Stream CNN with Loose Pair Training for Multi-modal AMD Categorization论文地址:https://arxiv.org/abs/1907.12023亮点:多模态CNN, Loose Pair TrainingTwo-Stream CNN with Loose Pair Training for Multi-modal AMD Categorization来自于MICCAI,对于年龄相关性黄斑病变(AMD),通过眼底图像(Fun
原创
发布博客 2020.06.09 ·
577 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【转载】 epoll 详解

https://zhuanlan.zhihu.com/p/63179839https://zhuanlan.zhihu.com/p/64138532https://zhuanlan.zhihu.com/p/64746509
原创
发布博客 2020.06.03 ·
120 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[Pytorch] Tensor的一些操作

做deep learning 用到pytorch 写代码的时候经常对tensor的操作记忆不深,记录一下1.Tensor - numpya = torch.ones(5) // Tensorb = a.numpy() // Numpyc = torch.from_numpy(b) //Tensor2.找出tensor某一维度每一项的最大值并返回索引和数值index = ...
原创
发布博客 2020.05.08 ·
244 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Biological Age Estimated from Retinal Imaging: A Novel Biomarker of Aging

Biological Age Estimated from Retinal Imaging: A Novel Biomarker of Aging论文地址:https://www.researchgate.net/publication/336391972_Biological_Age_Estimated_from_Retinal_Imaging_A_Novel_Biomarker_of_Agi...
原创
发布博客 2020.03.12 ·
390 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Attention Guided Network for Retinal Image Segmentation

Attention Guided Network for Retinal Image Segmentation论文地址:https://arxiv.org/abs/1907.12930代码:https://github.com/HzFu/AGNet亮点:在深度学习CNN网络中融入了传统的CV方法Guided Filter!Attention Guided Network for Reti...
原创
发布博客 2020.03.08 ·
1600 阅读 ·
1 点赞 ·
0 评论 ·
10 收藏