暑假到了,数学老师布置了孩子的作业,每天做一套100以内加减法的数学练习题。这对于我们家长来说,要为孩子的作业做点作业了。可以直接在电商平台购买现成的题目卷子。但我作为一个前不知名程序员,以及现在的某国产大模型的项目运营经理来说,似乎有点浪费资源的感觉。
我是一个执行力很强的人,先用大模型试试,现写一套提示词让大模型完成一次内容生成的任务,效果一般,调试了十分钟左右,试了几个国产大模型,实在没耐心了继续。
最后的版本提示词如下:
#任务
请出100以内加减法的数学练习卷,一套练习卷有50个题目。一共需要50份这样的练习卷。
#练习卷格式
第一,每一套卷请编号;
第二,每一行要放2个题目,这2个题目,在第1题空8个空格之后,再写下一个题目。
#题目要求
第一,两个数字要在100以内,求得的结果也在100以内;
第二,每套题目求得的结果要随机,不能有规律。
#行布局的示例
14+36 = 70+11 =
某包,格式生成的不对,理解不了要求:
某mi的结果,题目数量理解有误,然后出了一些题目撂挑子:
生成不了就别答应我嘛。
最终为了避免浪费更多时间,尽快完成家里领导交待的事情,免得节外生枝。让大模型生成了一段脚本代码:
import random
f = open("0630_practice.txt", "w+", encoding="utf-8")
def generate_question():
num1 = random.randint(1, 90)
num2 = random.randint(1, 90)
while num1 + num2 >= 100:
num2 = random.randint(1, 50)
return f"{num1}+{num2} ="
def format_exercise(exercise):
formatted_lines = []
for i in range(0, len(exercise), 2):
formatted_lines.append(f"{exercise[i]} {exercise[i+1]}")
return "\n".join(formatted_lines)
def generate_exercise_sheets(num_sheets, num_questions_per_sheet):
exercises = []
for _ in range(num_sheets):
sheet = [generate_question() for _ in range(num_questions_per_sheet)]
exercises.append(format_exercise(sheet))
return exercises
# 生成50份练习卷,每份卷子50道题目
num_sheets = 50
num_questions_per_sheet = 50
exercise_sheets = generate_exercise_sheets(num_sheets, num_questions_per_sheet)
# 打印所有练习卷
for i, exercise in enumerate(exercise_sheets, 1):
#print(f"练习卷{i}:\n{exercise}")
f.write(f"\n练习卷{i}\n{exercise}")
f.close()
我自己稍微修改调整,再运用office工具一通优化后,完成了本次的暑假作业出题。
给这次体验做个总结和点评,在计算机程序领域而言,大模型对低能级的技能确实有较大的冲击,能短平快写出满足需求的代码,但客观来说,仅能对掌握基础技能的从业者有所冲击和影响,也就是说模糊化了一个专业领域的边界。而实际工作中业务代码远远比我举的例子要复杂和多变,甚至有些要以对人性的熟稔来完成工作,大模型目前远远达不到替代的水平。我也有一种比较笃定的感觉,对从业者的技能要求会有一个跃迁或较大跨度的变化。比如一些视觉设计师,就要开始掌握模型的使用,技能包里最好有大模型提示词的编写技能,在工作效率上能跟同行拉开差距。